Revision as of 05:28, 19 October 2010 by Bell (Talk | contribs)

Homework 8 Collaboration Area

Question on problem 15 in Sec 6.6:

I tried to obtain the expression for

s/(s + 1) * 1/(s+1)

but am not getting the correct result in the Laplace table of

t sin t.

I am using the convolution of cos(tau)*sin(t-tau). There is no t term in sight. Is it okay to read off the table? Even if it is, shouldn't the result be the same?

Answer:

To find the inverse Laplace transform of

s/(s + 1) * 1/(s+1)

via convolution, you'll need to compute the convolution integral:

$ \int_0^t \cos(\tau)\sin(t-\tau)\ d\tau. $

You'll have to use a formula for the sine of the product of cosine and sine. Here it is:

(cos A)(sin B) = (1/2)sin(A+B) + (1/2)sin(B-A).

You'll need to be very careful. Remember, t acts like a constant in the integrals.

There is only one correct answer, so you should get it that way. (If it looks different than the back of the book, a trig identity might be at fault.)

Another, and perhaps better, way to solve this problem is to recognize that the given expression is the derivative of

1 / [(s+2)^2 + 1]]

...therefore greatly simplifying the solution (no trig identities required).

(You'll need to use the formula

L[ t f(t) ] = -F'(s)

to get the inverse transform.)

P.257 #8: I'm a bit confused on how to get this problem started... Based on other problems in this section, we can factor out a t such that the function inside the transform is t times f(t) where f(t)=t^(n-1)e^(kt), but I don't see how that helps us much.

Answer from Bell: You'll need to use mathematical induction for this problem. Start with n=1. Then use the formula

L[ t f(t) ] = -F'(s)

to reduce the n=2 case to the n=1 case, etc.

Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett