Line 1: Line 1:
 
== Homework 6 collaboration area ==
 
== Homework 6 collaboration area ==
 
Here is something to get you started:
 
 
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt</math>
 
 
<math>\mathcal{L}[f'(t)]= sF(s)-f(0)</math>
 
  
 
p. 226: 1.
 
p. 226: 1.
Line 13: Line 7:
 
Odd solutions in the back of the book.
 
Odd solutions in the back of the book.
  
p. 226: #2: who can validate this?
+
p. 226: #2:
  
 
<math>\mathcal(t^2 - 3)^2</math>
 
<math>\mathcal(t^2 - 3)^2</math>
  
<math>\mathcal{L}[f(t)] = \int_0^\infty e^{-st}f(t)\ dt = [F(s)] </math>
+
<math> = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 </math>
 
+
<math>\mathcal[f(t)] = (t^2 - 3)(t^2 - 3) = t^4 - 9t^2 + 9 </math>
+
 
+
<math>\mathcal[F(s)] = \int_0^\infty e^{-st}(t^4 - 9t^2 + 9)\ dt </math>
+
 
+
<math>\mathcal[F(s)] = \int_0^\infty [t^4 e^{-st} - 9t^2 e^{-st} + 9 e^{-st}]\ dt </math>
+
 
+
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]e^{-st} </math>
+
  
<math>\mathcal [e^{-st}] = 1 </math>  therefore  <math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]</math>  DONE?
+
So
  
p. 226: #4: who can validate this?
+
<math>\mathcal{L}[(t^2-3)^20} =
 +
\mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]=</math>
  
<math>\mathcal [sin^2 4t]</math>
 
  
<math>\mathcal{L}[f(t)] = \int_0^\infty e^{-st}f(t)\ dt = [F(s)] </math>
+
<math> = \frac{4!}{s^5} - 6\frac{3!}{s^3} + \frac{9}{s}</math>
  
<math>\ sin^2 \theta = \frac {1 - cos2\theta}{2} </math>
 
  
<math> \omega = 4 </math>
+
p. 226: #4:
  
<math>\mathcal[f(t)] = sin^2 \omega{t} = \frac{1 - cos2\omega{t}}{2}</math>  
+
<math>\ sin^2 4 t = \frac {1 - cos2(4t)}{2} </math>
  
<math>\mathcal[F(s)] = \int_0^\infty e^{-st}(\frac{1 - cos2\omega{t}}{2})\ dt </math>
+
So the Laplace Transform can be gotten from the table.
  
<math>\mathcal[F(s)] = \frac{1}{2} \int_0^\infty (e^{-st} - cos2\omega{t}e^{-st})\ dt </math>
+
p. 226: #23.
  
<math>\mathcal[F(s)] = \frac{1}{2} [\frac{1}{s} - \frac{s}{s^2 + 2\omega^2}] </math>
+
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s).</math>
  
<math>\mathcal[F(s)] = \frac{1}{2} [\frac{1}{s} - \frac{s}{s^2 + 2*4^2}] </math>
+
So
  
<math>\mathcal[F(s)] = \frac{1}{2} [\frac{1}{s} - \frac{s}{s^2 + 32}] </math>   DONE?
+
<math>\mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt.</math>
  
 +
Make the change of variables
  
 +
<math>\tau=ct</math>
  
-Does anyone have a hint on solving #23?
+
to get
  
 +
<math>\mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\(1/c) d\tau)=</math>
  
 +
<math>\frac{1}{c}F(s/c).</math>
  
 
Even solutions (added by Adam M on Oct 5, please check results):
 
Even solutions (added by Adam M on Oct 5, please check results):
Line 69: Line 58:
 
p. 226: 30.
 
p. 226: 30.
  
<math>inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
+
<math>\mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
  
 
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
 
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
  <math>inverse \mathcal{L}=-e^{-4t}+3e^{4t}</math>
+
  <math>\mathcal{L}^{-1}=-e^{-4t}+3e^{4t}</math>
  
  

Revision as of 08:06, 7 October 2010

Homework 6 collaboration area

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $

Odd solutions in the back of the book.

p. 226: #2:

$ \mathcal(t^2 - 3)^2 $

$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $

So

$ \mathcal{L}[(t^2-3)^20} = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $


$ = \frac{4!}{s^5} - 6\frac{3!}{s^3} + \frac{9}{s} $


p. 226: #4:

$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $

So the Laplace Transform can be gotten from the table.

p. 226: #23.

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $

So

$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $

Make the change of variables

$ \tau=ct $

to get

$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\(1/c) d\tau)= $

$ \frac{1}{c}F(s/c). $

Even solutions (added by Adam M on Oct 5, please check results):

p. 226: 10.

$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $

p. 226: 12.

$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $

p. 226: 30.

$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $

(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get

$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal