Line 1: Line 1:
 
== Homework 6 collaboration area ==
 
== Homework 6 collaboration area ==
 
Here is something to get you started:
 
 
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt</math>
 
 
<math>\mathcal{L}[f'(t)]= sF(s)-f(0)</math>
 
  
 
p. 226: 1.
 
p. 226: 1.
Line 13: Line 7:
 
Odd solutions in the back of the book.
 
Odd solutions in the back of the book.
  
p. 226: #2: who can validate this?
+
p. 226: #2:
  
 
<math>\mathcal(t^2 - 3)^2</math>
 
<math>\mathcal(t^2 - 3)^2</math>
  
<math>\mathcal{L}[f(t)] = \int_0^\infty e^{-st}f(t)\ dt = [F(s)] </math>
+
<math> = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 </math>
 
+
<math>\mathcal[f(t)] = (t^2 - 3)(t^2 - 3) = t^4 - 9t^2 + 9 </math>
+
 
+
<math>\mathcal[F(s)] = \int_0^\infty e^{-st}(t^4 - 9t^2 + 9)\ dt </math>
+
 
+
<math>\mathcal[F(s)] = \int_0^\infty [t^4 e^{-st} - 9t^2 e^{-st} + 9 e^{-st}]\ dt </math>
+
 
+
<math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]e^{-st} </math>
+
  
<math>\mathcal [e^{-st}] = 1 </math>  therefore  <math>\mathcal[F(s)] = [\frac{24}{s^5} - \frac{18}{s^3} + \frac{9}{s}]</math>  DONE?
+
So
  
p. 226: #4: who can validate this?
+
<math>\mathcal{L}[(t^2-3)^20} =
 +
\mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]=</math>
  
<math>\mathcal [sin^2 4t]</math>
 
  
<math>\mathcal{L}[f(t)] = \int_0^\infty e^{-st}f(t)\ dt = [F(s)] </math>
+
<math> = \frac{4!}{s^5} - 6\frac{3!}{s^3} + \frac{9}{s}</math>
  
<math>\ sin^2 \theta = \frac {1 - cos2\theta}{2} </math>
 
  
<math> \omega = 4 </math>
+
p. 226: #4:
  
<math>\mathcal[f(t)] = sin^2 \omega{t} = \frac{1 - cos2\omega{t}}{2}</math>  
+
<math>\ sin^2 4 t = \frac {1 - cos2(4t)}{2} </math>
  
<math>\mathcal[F(s)] = \int_0^\infty e^{-st}(\frac{1 - cos2\omega{t}}{2})\ dt </math>
+
So the Laplace Transform can be gotten from the table.
  
<math>\mathcal[F(s)] = \frac{1}{2} \int_0^\infty (e^{-st} - cos2\omega{t}e^{-st})\ dt </math>
+
p. 226: #23.
  
<math>\mathcal[F(s)] = \frac{1}{2} [\frac{1}{s} - \frac{s}{s^2 + 2\omega^2}] </math>
+
<math>\mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s).</math>
  
<math>\mathcal[F(s)] = \frac{1}{2} [\frac{1}{s} - \frac{s}{s^2 + 2*4^2}] </math>
+
So
  
<math>\mathcal[F(s)] = \frac{1}{2} [\frac{1}{s} - \frac{s}{s^2 + 32}] </math>   DONE?
+
<math>\mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt.</math>
  
 +
Make the change of variables
  
 +
<math>\tau=ct</math>
  
-Does anyone have a hint on solving #23?
+
to get
  
 +
<math>\mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\(1/c) d\tau)=</math>
  
 +
<math>\frac{1}{c}F(s/c).</math>
  
 
Even solutions (added by Adam M on Oct 5, please check results):
 
Even solutions (added by Adam M on Oct 5, please check results):
Line 69: Line 58:
 
p. 226: 30.
 
p. 226: 30.
  
<math>inverse \mathcal{L}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
+
<math>\mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t)</math>
  
 
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
 
(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get
  <math>inverse \mathcal{L}=-e^{-4t}+3e^{4t}</math>
+
  <math>\mathcal{L}^{-1}=-e^{-4t}+3e^{4t}</math>
  
  

Revision as of 08:06, 7 October 2010

Homework 6 collaboration area

p. 226: 1.

$ \mathcal{L}[t^2-2t]= \frac{2}{s^3}-2\frac{1}{s^2} $

Odd solutions in the back of the book.

p. 226: #2:

$ \mathcal(t^2 - 3)^2 $

$ = (t^2 - 3)(t^2 - 3) = t^4 - 6t^2 + 9 $

So

$ \mathcal{L}[(t^2-3)^20} = \mathcal{L}[t^4]-6\mathcal{L}[t^2]+9\mathcal{L}[1]= $


$ = \frac{4!}{s^5} - 6\frac{3!}{s^3} + \frac{9}{s} $


p. 226: #4:

$ \ sin^2 4 t = \frac {1 - cos2(4t)}{2} $

So the Laplace Transform can be gotten from the table.

p. 226: #23.

$ \mathcal{L}[f(t)]=\int_0^\infty e^{-st}f(t)\ dt=F(s). $

So

$ \mathcal{L}[f(ct)]=\int_0^\infty e^{-st}f(ct)\ dt. $

Make the change of variables

$ \tau=ct $

to get

$ \mathcal{L}[f(ct)]=\int_{\tau=0}^\infty e^{-(s/c)\tau}f(\tau)\(1/c) d\tau)= $

$ \frac{1}{c}F(s/c). $

Even solutions (added by Adam M on Oct 5, please check results):

p. 226: 10.

$ \mathcal{L}[-8sin(0.2t)]=\frac{-1.6}{s^2+0.04} $

p. 226: 12.

$ \mathcal{L}[(t+1)^3]=\frac{6}{s^4}+\frac{6}{s^3}+\frac{3}{s^2}+\frac{1}{s} $

p. 226: 30.

$ \mathcal{L}^{-1}[\frac{2s+16}{s^2-16}]=2cosh(4t)+4sinh(4t) $

(AJ) I have the same solutions for p 226 #10 and #12, but on #30, I factored the denominator and used partial fraction decomposition to get

$ \mathcal{L}^{-1}=-e^{-4t}+3e^{4t} $


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang