Revision as of 10:44, 10 September 2009 by Bell (Talk | contribs)


Homework 2

HWK 2 problems

Here's a hint for II.3.1 (ii) --Bell:

$ \frac{f(z)g(z)-f(z_0)g(z_0)}{z-z_0}=\frac{f(z)g(z)-f(z)g(z_0)+f(z)g(z_0)-f(z_0)g(z_0)}{z-z_0}= $

$ f(z)\frac{g(z)-g(z_0)}{z-z_0}+g(z_0)\frac{f(z)-f(z_0)}{z-z_0}. $

Here is a hint for II.8.1 (c) --Bell:

If the modulus of $ f=u+iv $ is constant, then

$ u^2+v^2=c. $

Take the partial derivative of this equation with respect to x to get one equation. Take it with respect to y to get another. Use the Cauchy-Riemann equations to conclude that the gradients of both u and v must be identically zero.

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood