Line 5: Line 5:
 
[http://www.math.purdue.edu/~bell/MA425/hwk2.txt HWK 2 problems]
 
[http://www.math.purdue.edu/~bell/MA425/hwk2.txt HWK 2 problems]
  
Here's a hint for II.3.1 (ii):
+
Here's a hint for II.3.1 (ii) --[[User:Bell|Bell]]:
  
 
<math>\frac{f(z)g(z)-f(z_0)g(z_0)}{z-z_0}=\frac{f(z)g(z)-f(z)g(z_0)+f(z)g(z_0)-f(z_0)g(z_0)}{z-z_0}=</math>
 
<math>\frac{f(z)g(z)-f(z_0)g(z_0)}{z-z_0}=\frac{f(z)g(z)-f(z)g(z_0)+f(z)g(z_0)-f(z_0)g(z_0)}{z-z_0}=</math>
  
 
<math>f(z)\frac{g(z)-g(z_0)}{z-z_0}+g(z_0)\frac{f(z)-f(z_0)}{z-z_0}.</math>
 
<math>f(z)\frac{g(z)-g(z_0)}{z-z_0}+g(z_0)\frac{f(z)-f(z_0)}{z-z_0}.</math>
 +
 +
Here is a hint for II.8.1 (c) --[[User:Bell|Bell]]:
 +
 +
If the modulus of <math>f=u+iv</math> is constant, then
 +
 +
<math>u^2+v^2=c.</math>
 +
 +
Take the partial derivative of this equation with respect to x to get one equation.  Take it with respect to y to get another.  Use the Cauchy-Riemann equations to conclude that the gradients of both u and v must be identically zero.

Revision as of 10:44, 10 September 2009


Homework 2

HWK 2 problems

Here's a hint for II.3.1 (ii) --Bell:

$ \frac{f(z)g(z)-f(z_0)g(z_0)}{z-z_0}=\frac{f(z)g(z)-f(z)g(z_0)+f(z)g(z_0)-f(z_0)g(z_0)}{z-z_0}= $

$ f(z)\frac{g(z)-g(z_0)}{z-z_0}+g(z_0)\frac{f(z)-f(z_0)}{z-z_0}. $

Here is a hint for II.8.1 (c) --Bell:

If the modulus of $ f=u+iv $ is constant, then

$ u^2+v^2=c. $

Take the partial derivative of this equation with respect to x to get one equation. Take it with respect to y to get another. Use the Cauchy-Riemann equations to conclude that the gradients of both u and v must be identically zero.

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison