Line 9: Line 9:
 
<math>(z,w)\mapsto z+w</math>
 
<math>(z,w)\mapsto z+w</math>
  
is a continuous mapping from <math>\mathbb C\times \mathbb C</math>  to <math>\mathbb C</math> because
+
is a continuous mapping
 +
 
 +
<math>(\mathbb C\times \mathbb C)\to\mathbb C</math>
 +
 
 +
because
  
 
<math>|(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0|</math>
 
<math>|(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0|</math>
  
and to make this last quantity less than <math>\epsilon</math>, it suffices to take
+
and to make this last quantity less than epsilon, it suffices to take
 +
 
 +
<math>|z-z_0|<\epsilon/2</math>
 +
 
 +
and
  
<math>|z-z_0|<\epsilon/2</math> and <math>|w-w_0|<\epsilon/2</math>.
+
<math>|w-w_0|<\epsilon/2.</math>
  
 
To handle complex multiplication, you will need to use the standard trick:
 
To handle complex multiplication, you will need to use the standard trick:
  
 
<math>zw-z_0w_0 = zw-zw_0+zw_0-z_0w_0=z(w-w_0)+w_0(z-z_0)</math>.
 
<math>zw-z_0w_0 = zw-zw_0+zw_0-z_0w_0=z(w-w_0)+w_0(z-z_0)</math>.

Revision as of 08:35, 3 September 2009

Homework 2

HWK 2 problems

Here's a hint on I.8.3 --Bell

It is straightforward to show that

$ (z,w)\mapsto z+w $

is a continuous mapping

$ (\mathbb C\times \mathbb C)\to\mathbb C $

because

$ |(z+w)-(z_0+w_0)|\le|z-z_0|+|w-w_0| $

and to make this last quantity less than epsilon, it suffices to take

$ |z-z_0|<\epsilon/2 $

and

$ |w-w_0|<\epsilon/2. $

To handle complex multiplication, you will need to use the standard trick:

$ zw-z_0w_0 = zw-zw_0+zw_0-z_0w_0=z(w-w_0)+w_0(z-z_0) $.

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett