(One intermediate revision by the same user not shown)
Line 7: Line 7:
 
<math>f(a)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-a}\ dz.</math>
 
<math>f(a)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-a}\ dz.</math>
  
Stirling's Formula
+
Here is Stirling's Formula:
  
<math>\lim_{n\to\infty}\frac{n!}{\sqrt{2\pi n}\left(\frac{n}{e}\right)^n} =1.</math>--[[User:Bell|Steve Bell]] 10:28, 19 January 2011 (UTC)
+
<math>\lim_{n\to\infty}\frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n} =\sqrt{2\pi}.</math>--[[User:Bell|Steve Bell]] 10:28, 19 January 2011 (UTC)
  
 
== Problem 1 ==
 
== Problem 1 ==

Latest revision as of 11:25, 19 January 2011

Homework 1 collaboration area

Feel free to toss around ideas here.--Steve Bell

Here is my favorite formula:

$ f(a)=\frac{1}{2\pi i}\int_\gamma \frac{f(z)}{z-a}\ dz. $

Here is Stirling's Formula:

$ \lim_{n\to\infty}\frac{n!}{\sqrt{n}\left(\frac{n}{e}\right)^n} =\sqrt{2\pi}. $--Steve Bell 10:28, 19 January 2011 (UTC)

Problem 1

Problem 2

Problem 3

Difference quotient should include a special case when $ f(z)=f(z_0) $.

Problem 4

Problem 5

Use Problem 4.

Problem 6

Hint: Notice that if

$ |a_n r^n|< M, $

then

$ |a_n z^n|=|a_n r^n|\left(\frac{|z|}{r}\right)^n< M\left(\frac{|z|}{r}\right)^n, $

and you can compare the series to a convergent geometric series if

$ |z|<r. $

About the trick in the Problem 6, one direction is easy;

The other direction can be proved using a trick by considering $ r-\epsilon $ where $ \epsilon>0 $ is some arbitrarily small quantity. This yields a convergent geometric series, which serves as an upper-bound of the original absolute series. Finally, let $ \epsilon $ go to zero. Result from Problem 5 is involved.

Back to the MA 530 Rhea start page

To Rhea Course List

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett