Line 9: Line 9:
 
Let
 
Let
  
<math>\frac{f(z)-f(a)}{z-a} - f'(a) = E(z).</math>
+
<math>\frac{f(z)-f(a)}{z-a} - f'(a) = E_f(z).</math>
  
 
Then
 
Then
  
<math>f(z)= f(a)+f'(a)(z-a)+E(z)(z-a).</math>
+
<math>f(z)= f(a)+f'(a)(z-a)+E_f(z)(z-a).</math>
 +
 
 +
Note that if <math>f(z)</math> is complex differentiable at <math>a</math>, then
 +
 
 +
<math>\lim_{z\to a} E_f(z)=0.</math>
 +
 
 +
Next, let
 +
 
 +
<math>\frac{g(w)-g(A)}{w-A} - g'(A) = E_g(w),</math>
 +
 
 +
where <math>A=f(a).</math>
 +
 
 +
Now
 +
 
 +
<math>g(w)= g(A)+g'(A)(w-A)+E_g(w)(w-A).</math>
 +
 
 +
To prove the Chain Rule, let <math>w=f(z)</math> in the formula above and write out the difference quotient for <math>g(f(z))</math>.  The limit should become obvious.  You will need to use the fact that <math>f</math> complex differentiable at <math>a</math> implies that <math>f</math> is continuous at <math>a</math> in order to deduce that <math>E_g(f(z))</math> tends to zero as <math>z</math> tends to <math>a</math>.

Revision as of 09:06, 13 January 2010


Homework 1

HWK 1 problems

Hint for complex chain rule:

Let

$ \frac{f(z)-f(a)}{z-a} - f'(a) = E_f(z). $

Then

$ f(z)= f(a)+f'(a)(z-a)+E_f(z)(z-a). $

Note that if $ f(z) $ is complex differentiable at $ a $, then

$ \lim_{z\to a} E_f(z)=0. $

Next, let

$ \frac{g(w)-g(A)}{w-A} - g'(A) = E_g(w), $

where $ A=f(a). $

Now

$ g(w)= g(A)+g'(A)(w-A)+E_g(w)(w-A). $

To prove the Chain Rule, let $ w=f(z) $ in the formula above and write out the difference quotient for $ g(f(z)) $. The limit should become obvious. You will need to use the fact that $ f $ complex differentiable at $ a $ implies that $ f $ is continuous at $ a $ in order to deduce that $ E_g(f(z)) $ tends to zero as $ z $ tends to $ a $.

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010