Line 21: Line 21:
  
 
Do the same thing for <math>c_{-n}</math> and combine.
 
Do the same thing for <math>c_{-n}</math> and combine.
 +
 +
 +
Question: Page 506, Prob 15, if:
 +
 +
<math>2a_o=\frac{2Pi^4}{9}</math>
 +
 +
and
 +
 +
<math>(a_n)^2=\frac{(4Pi^2)(cos)^2(nx)}{9}</math>
 +
 +
 +
I dont understand where the <math>\frac{Pi^4}{4}</math> comes from?  Can anyone point out what I am doing wrong?
 +
  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  
 
[[2010 MA 527 Bell|Back to the MA 527 start page]]  

Revision as of 07:26, 6 November 2010

Homework 11 collaboration area

Question: I'm having trouble getting HWK 11, Page 499, Problem 3 started.

Answer: You will need to use Euler's identity

$ e^{i\theta}=\cos\theta+i\sin\theta $

and separate the definitions of the complex coefficients into real and imaginary parts. For example,

$ c_n=\frac{1}{2L}\int_{-L}^L f(x)e^{-inx}\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(-nx)+i\sin(-nx))\,dx= $

$ =\frac{1}{2L}\int_{-L}^L f(x)(\cos(nx)-i\sin(nx))\,dx= $

$ =\frac{1}{2L}(\int_{-L}^L f(x)(\cos(nx)\,dx - i\int_{-L}^L f(x)\sin(nx)\,dx)= $

$ =\frac{1}{2}(a_n-ib_n). $

Do the same thing for $ c_{-n} $ and combine.


Question: Page 506, Prob 15, if:

$ 2a_o=\frac{2Pi^4}{9} $

and

$ (a_n)^2=\frac{(4Pi^2)(cos)^2(nx)}{9} $


I dont understand where the $ \frac{Pi^4}{4} $ comes from? Can anyone point out what I am doing wrong?


Back to the MA 527 start page

To Rhea Course List

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010