Line 14: Line 14:
 
Graphically, this equation looks as follows,
 
Graphically, this equation looks as follows,
  
              <math>x(t)\!</math> ----------> x --------> <math>x_p(t)\!</math>
+
              <math>x(t)\!</math> ----------> x --------> <math>y(t)\!</math>
 
                               ^
 
                               ^
 
                               |
 
                               |
 
                               |
 
                               |
 
                       <math>c(t) = e^{j(\omega_c t + \theta_c)}\!</math>
 
                       <math>c(t) = e^{j(\omega_c t + \theta_c)}\!</math>

Revision as of 16:17, 16 November 2008

Complex Exponential Modulation

Many communication systems rely on the concept of sinusoidal amplitude modulation, in which a complex exponential or a sinusoidal signal, $ c(t)\! $, has its amplitude modulated by the information-bearing signal, $ x(t)\! $. $ x(t)\! $ is the modulating signal, and $ c(t)\! $ is the carrier signal. The modulated signal, $ y(t)\! $, is the product of these two signals:

$ y(t) = x(t)c(t)\! $

An important objective of amplitude modulation is to produce a signal whose frequency range is suitable for transmission over the communication channel that is to be used.

One important for of modulation is when a complex exponential is used as the carrier.

$ c(t) = e^{j(\omega_c t + \theta_c)}\! $

$ \omega_c\! $ is called the carrier frequency, and $ \theta_c\! $ is called the phase of the carrier.

Graphically, this equation looks as follows,

              $ x(t)\! $ ----------> x --------> $ y(t)\! $
                              ^
                              |
                              |
                      $ c(t) = e^{j(\omega_c t + \theta_c)}\! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett