Line 17: Line 17:
 
<math>x_p(t) = x(t)p(t)\!</math>
 
<math>x_p(t) = x(t)p(t)\!</math>
  
<math>      = x(t)\sum^{\infty}_{n = -\infty} \delta(t - nT)\!</math>
+
  <math>      = x(t)\sum^{\infty}_{n = -\infty} \delta(t - nT)\!</math>
  
<math>      =\sum^{\infty}_{n = -\infty}x(t)\delta(t - nT)\!</math>
+
  <math>      =\sum^{\infty}_{n = -\infty}x(t)\delta(t - nT)\!</math>
  
<math>      =\sum^{\infty}_{n = -\infty}x(nT)\delta(t - nT)\!</math>
+
  <math>      =\sum^{\infty}_{n = -\infty}x(nT)\delta(t - nT)\!</math>

Revision as of 12:51, 9 November 2008

Impulse-train Sampling

One type of sampling that satisfies the Sampling Theorem is called impulse-train sampling. This type of sampling is achieved by the use of a periodic impulse train multiplied by a continuous time signal, $ x(t)\! $. The periodic impulse train, $ p(t)\! $ is referred to as the sampling function, the period, $ T\! $, is referred to as the sampling period, and the fundamental frequency of $ p(t)\! $, $ \omega_s = \frac{2\pi}{T}\! $, is the sampling frequency. We define $ x_p(t)\! $ by the equation,

$ x_p(t) = x(t)p(t)\! $, where
$ p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\! $

Graphically, this equation looks as follows,

             $ x(t)\! $ ----------> x --------> $ x_p(t)\! $
                              ^
                              |
                              |
                  $ p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\! $

By using linearity and the sifting property, $ x_p(t)\! $ can be represented as follows,

$ x_p(t) = x(t)p(t)\! $

  $        = x(t)\sum^{\infty}_{n = -\infty} \delta(t - nT)\! $
  $        =\sum^{\infty}_{n = -\infty}x(t)\delta(t - nT)\! $
  $        =\sum^{\infty}_{n = -\infty}x(nT)\delta(t - nT)\! $

Alumni Liaison

EISL lab graduate

Mu Qiao