Line 8: Line 8:
  
 
<math>x(t)\!</math> -------> x --------> <math>x_p(t)\!</math>
 
<math>x(t)\!</math> -------> x --------> <math>x_p(t)\!</math>
                        ^
+
                  ^
                        |
+
                  |
                        |
+
                  |
 
                   <math>p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\!</math>
 
                   <math>p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\!</math>

Revision as of 12:44, 9 November 2008

Impulse-train Sampling

One type of sampling that satisfies the Sampling Theorem is called impulse-train sampling. This type of sampling is achieved by the use of a periodic impulse train multiplied by a continuous time signal, $ x(t)\! $. The periodic impulse train, $ p(t)\! $ is referred to as the sampling function, the period, $ T\! $, is referred to as the sampling period, and the fundamental frequency of $ p(t)\! $, $ \omega_s = \frac{2\pi}{T}\! $, is the sampling frequency. We define $ x_p(t)\! $ by the equation,

$ x_p(t) = x(t)p(t)\! $, where
$ p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\! $

Graphically, this equation looks as follows,

$ x(t)\! $ -------> x --------> $ x_p(t)\! $

                  ^
                  |
                  |
$ p(t) = \sum^{\infty}_{n = -\infty} \delta(t - nT)\! $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett