Revision as of 19:44, 10 November 2008 by Moellerb (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Proving the Sampling Theorem

The sampling can be represented by "Impulse-train Sampling."

$ x_p(t) = ? $ $ x_p(t) = x(t)p(t) $ $ x_p(t) = x(t)\sum_{n=-\infty}^{\infty} \delta(t-nT) $

We can recover $ x(t) $ from $ x_p(t) $ as follows:

$ x_p(t) \rightarrow H(\omega) \rightarrow x_r(t) $

Where $ H(\omega) $ is a filter with gain equal to the period of the signal and a cutoff frequency of $ \omega_c $.

$ \omega_c \rightarrow \omega_m < \omega_c < \omega_s - \omega_m $.

This process can be easily shown in the frequency domain graphically. An example is below.

Graph

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett