Line 11: Line 11:
 
<math>x_p(t) \rightarrow H(\omega) \rightarrow x_r(t)</math>
 
<math>x_p(t) \rightarrow H(\omega) \rightarrow x_r(t)</math>
  
Where <math>H(\omega)</math> is a filter with gain equal to the period of the signal and a cutoff frequency of <math>omega_c</math>.
+
Where <math>H(\omega)</math> is a filter with gain equal to the period of the signal and a cutoff frequency of <math>\omega_c</math>.
  
 
<math> \omega_c \rightarrow \omega_m < \omega_c < \omega_s - \omega_m</math>.
 
<math> \omega_c \rightarrow \omega_m < \omega_c < \omega_s - \omega_m</math>.

Revision as of 19:12, 10 November 2008

-- Proving the Sampling Theorem --

The sampling can be represented by "Impulse-train Sampling."

$ x_p(t) = ? $ $ x_p(t) = x(t)p(t) $ $ x_p(t) = x(t)\sum_{n=-\infty}^{\infty} \delta(t-nT) $

We can recover $ x(t) $ from $ x_p(t) $ as follows:

$ x_p(t) \rightarrow H(\omega) \rightarrow x_r(t) $

Where $ H(\omega) $ is a filter with gain equal to the period of the signal and a cutoff frequency of $ \omega_c $.

$ \omega_c \rightarrow \omega_m < \omega_c < \omega_s - \omega_m $.

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman