Line 38: Line 38:
 
\end{align}
 
\end{align}
 
</math>
 
</math>
 +
 +
==Question 3==
 +
First, we find the FT of <math>x[n]</math> and <math>h[n]</math>:
 +
<math>\mathcal{X}(\omega)=\frac{1}{1-\frac{3}{4}e^{-j\omega}}</math>
 +
<math>\mathcal{H}(\omega)=\frac{1}{1-\frac{1}{2}e^{-j\omega}}</math>
 +
 +
Then,
 +
 +
<math>\mathcal{Y}(\omega)=\mathcal{H}(\omega)\mathcal{X}(\omega)=\frac{8}{(4-3e^{-j\omega})(2-e^{-j\omega})}</math>
 +
 +
Now, we need to write out the partial fraction expansion:
 +
 +
\frac{1}{(4-3e^{-j\omega})(2-e^{-j\omega})}=\frac{A}{4-3e^{-j\omega}}+\frac{B}{2-e^{-j\omega}}</math>
 +
 +
Multiplying both sides by <math>(4-3e^{-j\omega})(2-e^{-j\omega})</math>, we get:
 +
 +
<math>A(2-e^{-j\omega})+B(4-3e^{-j\omega})=1</math>
 +
 +
Comparing both sides and solving, we have that:
 +
 +
<math>A=\frac{3}{2}</math> and <math>B=-\frac{1}{2}</math>

Revision as of 17:20, 20 March 2011

Homework 7 Solutions, ECE301 Spring 2011 Prof. Boutin

Students should feel free to make comments/corrections or ask questions directly on this page.

Question 1

$ \begin{align} \mathcal{X}(\omega)&= \sum_{n=-\infty}^{\infty} 5^{-|n+2|}e^{-j\omega n}\\ &= \sum_{n=-\infty}^{-3} 5^{(n+2)}e^{-j\omega n} + \sum_{n=-2}^{\infty}5^{-(n+2)}e^{-j\omega n} \\ &= 25 \sum_{n=-\infty}^{-3} \left(\frac{1}{5}e^{j\omega}\right)^{-n} + e^{2j\omega}\sum_{n=-2}^{\infty} (5e^{j\omega})^{-(n+2)} \\ &= 25 \sum_{n=3}^{\infty} \left(\frac{1}{5}e^{j\omega}\right)^{n} + e^{2j\omega}\sum_{n=0}^{\infty} (5e^{j\omega})^{-n}\\ &= 25\cdot \frac{\left(\frac{1}{5}e^{j\omega}\right)^{3}}{1-\frac{1}{5}e^{j\omega}} + \frac{e^{2j\omega}}{1-\frac{1}{5}e^{-j\omega}}\\ &=\frac{e^{3j\omega}}{5-e^{j\omega}} + \frac{5e^{2j\omega}}{5-e^{-j\omega}} \end{align} $

To verify our answer using the table, we first write:

$ x[n]=5^{(n+2)}u[-n-3]+5^{-(n+2)}u[n+2]=\frac{1}{5}\left(\frac{1}{5}\right)^{-(n+3)}u[-(n+3)]+\left(\frac{1}{5}\right)^{(n+2)}u[n+2] $.

Using the time reversal property (for the first term), the time shift property (for both terms), the appropriate pair from the table, and the linearity of the FT, we get:

$ \begin{align} \mathcal{X}(\omega)&=\frac{e^{3j\omega}}{5}\left(\frac{1}{1-\frac{1}{5}e^{j\omega}}\right)+\frac{e^{2j\omega}}{1-\frac{1}{5}e^{-j\omega}} \\ &=\frac{e^{3j\omega}}{5-e^{j\omega}}+\frac{5e^{2j\omega}}{5-e^{-j\omega}} \end{align} $.

Question 2

We choose the period from $ (-\pi,\pi) $ (which corresponds to the part of the signal for k=0) to compute the inverse DT Fourier transform of the given signal:

$ \begin{align} x[n]&=\frac{1}{2\pi}\int_{-\pi}^{\pi} \mathcal{X}(\omega)e^{j\omega n}d\omega \\ &=\frac{1}{2\pi}\int_{-\pi}^{\pi} \left[ \delta (\omega) +\pi\delta\left(\omega -\frac{\pi}{2}\right)+\pi\delta\left(\omega +\frac{\pi}{2}\right) \right] d\omega \\ &=\frac{1}{2\pi}\int_{-\pi}^{\pi} \delta (\omega) d\omega +\frac{1}{2}\int_{-\pi}^{\pi}\delta\left(\omega -\frac{\pi}{2}\right) d\omega+\frac{1}{2}\int_{-\pi}^{\pi}\delta\left(\omega +\frac{\pi}{2}\right) d\omega \\ &=\frac{1}{2\pi} + \frac{1}{2}e^{-j\frac{\pi}{2}n}+\frac{1}{2}e^{j\frac{\pi}{2}n} \\ &=\frac{1}{2\pi} + \cos\left(\frac{\pi}{2}n\right) \end{align} $

Question 3

First, we find the FT of $ x[n] $ and $ h[n] $: $ \mathcal{X}(\omega)=\frac{1}{1-\frac{3}{4}e^{-j\omega}} $ $ \mathcal{H}(\omega)=\frac{1}{1-\frac{1}{2}e^{-j\omega}} $

Then,

$ \mathcal{Y}(\omega)=\mathcal{H}(\omega)\mathcal{X}(\omega)=\frac{8}{(4-3e^{-j\omega})(2-e^{-j\omega})} $

Now, we need to write out the partial fraction expansion:

\frac{1}{(4-3e^{-j\omega})(2-e^{-j\omega})}=\frac{A}{4-3e^{-j\omega}}+\frac{B}{2-e^{-j\omega}}</math>

Multiplying both sides by $ (4-3e^{-j\omega})(2-e^{-j\omega}) $, we get:

$ A(2-e^{-j\omega})+B(4-3e^{-j\omega})=1 $

Comparing both sides and solving, we have that:

$ A=\frac{3}{2} $ and $ B=-\frac{1}{2} $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett