Line 5: Line 5:
  
  
Put your content here . . .
+
==Question 1==
 +
 
 +
a) For <math>k=0,1,...,N-1</math>
 +
 
 +
<math>\begin{align}
 +
X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\
 +
&= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\
 +
&= 1
 +
\end{align}</math>
 +
 
 +
b) Using Euler Formula, we have
 +
 
 +
<math>\begin{align}
 +
x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\
 +
&= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}}
 +
\end{align}</math>
 +
 
 +
Observing that <math>x[n]</math> has fundamental period <math>N=12</math>. Using IDFT, we have
 +
 
 +
<math>\begin{align}
 +
x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\
 +
\frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}}
 +
\end{align}</math>
 +
 
 +
By comparison, we know for <math>k=0,1,...,11</math>
 +
 
 +
<math class="inline">
 +
X_{12}[k] = \left\{
 +
\begin{array}{ll}
 +
6, & k=1,3 \\
 +
0, & otherwise.
 +
\end{array}
 +
\right.
 +
</math>
 +
 
 +
c)
 +
 
 +
<math>x[n]=(\frac{1}{\sqrt 2} + j\frac{1}{\sqrt 2})^n = (e^{\frac{j\pi}{4}})^n</math>
 +
 
 +
Then <math>x[n]</math> has fundamental period <math>N=8</math>. Using IDFT, we have
 +
 
 +
<math>\begin{align}
 +
x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\
 +
e^{\frac{j\pi n}{4}} &= \frac{1}{8}\sum_{n=0}^{7}e^{\frac{j2\pi nk}{8}}
 +
\end{align}</math>
 +
 
 +
By comparison, we know for <math>k=0,1,...,7</math>
 +
 
 +
<math class="inline">
 +
X_{8}[k] = \left\{
 +
\begin{array}{ll}
 +
8, & k=1 \\
 +
0, & otherwise.
 +
\end{array}
 +
\right.
 +
</math>
  
  

Revision as of 09:45, 30 September 2013


HW6_Solution_ECE438F13

Question 1

a) For $ k=0,1,...,N-1 $

$ \begin{align} X_N(k) &= \sum_{k=0}^{N-1}x[n]e^{-\frac{j2\pi nk}{N}} \\ &= x[0]e^{-\frac{j2\pi 0\cdot k}{N}} \\ &= 1 \end{align} $

b) Using Euler Formula, we have

$ \begin{align} x[n] &= e^{\frac{j\pi n}{3}}(\frac{ e^{\frac{j\pi n}{6}} + e^{-\frac{j\pi n}{6}} }{2}) \\ &= \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} \end{align} $

Observing that $ x[n] $ has fundamental period $ N=12 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ \frac{1}{2}e^{\frac{j\pi n}{2}} + \frac{1}{2}e^{\frac{j\pi n}{6}} &= \frac{1}{12}\sum_{n=0}^{11}e^{\frac{j2\pi nk}{12}} \end{align} $

By comparison, we know for $ k=0,1,...,11 $

$ X_{12}[k] = \left\{ \begin{array}{ll} 6, & k=1,3 \\ 0, & otherwise. \end{array} \right. $

c)

$ x[n]=(\frac{1}{\sqrt 2} + j\frac{1}{\sqrt 2})^n = (e^{\frac{j\pi}{4}})^n $

Then $ x[n] $ has fundamental period $ N=8 $. Using IDFT, we have

$ \begin{align} x[n] &= \frac{1}{N}\sum_{n=0}^{N-1}e^{\frac{j2\pi nk}{N}} \\ e^{\frac{j\pi n}{4}} &= \frac{1}{8}\sum_{n=0}^{7}e^{\frac{j2\pi nk}{8}} \end{align} $

By comparison, we know for $ k=0,1,...,7 $

$ X_{8}[k] = \left\{ \begin{array}{ll} 8, & k=1 \\ 0, & otherwise. \end{array} \right. $



Back to HW6ECE$38F13

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva