(New page: Question 4 Compute the coefficients <math>a_k</math> of the Fourier series of the signal <math>x(t)</math> periodic with period <math>T=4</math> defined by <math>\,x(t)=\left\{\begin{arra...)
 
Line 14: Line 14:
 
<math> a_0= average of x(t) = /frac {1x2}{4}=/frac{1}{2};
 
<math> a_0= average of x(t) = /frac {1x2}{4}=/frac{1}{2};
  
T=4, <math>\omega _o = \frac{2 \pi} {4} = \frac{\pi}{2}\,</math>  
+
T=4, <math>\omega _o = \frac{2 \pi} {4} = \frac{\pi}{2}</math>  
  
 
for k<>0,
 
for k<>0,
  
<math>a_k=\frac{1}{T}\int_{0}^{T}x(t)e^{-jk\frac{2\pi}{T}t}dt\,</math>
+
<math>a_k=\frac{1}{T}\int_{0}^{T}x(t)e^{-jk\frac{2\pi}{T}t}dt</math>
  
<math>a_k=\frac{1}{4}\int_{-2}^{2}x(t)e^{-jk\frac{\pi}{2}t}dt\,</math>
+
<math>a_k=\frac{1}{4}\int_{-2}^{2}x(t)e^{-jk\frac{\pi}{2}t}dt</math>
  
<math>a_k=\frac{1}{4}\int_{-1}^{1}x(t)e^{-jk\frac{\pi}{2}t}dt\,</math>
+
<math>a_k=\frac{1}{4}\int_{-1}^{1}x(t)e^{-jk\frac{\pi}{2}t}dt</math>
  
<math>a_k=\frac{1}{4} \left.\frac{1}{-jk\frac{\pi}{2}}e^{-jk\frac{\pi}{2}t}\right|_{-1}^{1}\,</math>
+
<math>a_k=\frac{1}{4} \left.\frac{e^{-jk\frac{\pi}{2}t}}{-jk\frac{\pi}{2}}\right|_{-1}^{1}</math>
 +
 
 +
<math>a_k=\frac{1}{4} (\frac{e^{-jk\frac{\pi}{2}t}}{-jk\frac{\pi}{2}}-\frac{e^{jk\frac{\pi}{2}t}}{jk\frac{\pi}{2}})<\math>
 +
 
 +
<math>a_k=\frac{1}{2jk\pi}(e^{jk\frac{\pi}{2}}-e^{-jk\frac{\pi}{2}})<\math>
 +
 
 +
<math>a_k=\frac{sin(k\frac{\pi}{2})}{k\pi}<\math>

Revision as of 09:03, 15 October 2008

Question 4 Compute the coefficients $ a_k $ of the Fourier series of the signal $ x(t) $ periodic with period $ T=4 $ defined by $ \,x(t)=\left\{\begin{array}{cc} 0, & -2<t<-1 \\ 1, & -1\leq t\leq 1 \\ 0, & 1<t\leq 2 \end{array} \right. \, $

(Simplify your answer as much as possible.)



Ans: $ a_0= average of x(t) = /frac {1x2}{4}=/frac{1}{2}; T=4, <math>\omega _o = \frac{2 \pi} {4} = \frac{\pi}{2} $

for k<>0,

$ a_k=\frac{1}{T}\int_{0}^{T}x(t)e^{-jk\frac{2\pi}{T}t}dt $

$ a_k=\frac{1}{4}\int_{-2}^{2}x(t)e^{-jk\frac{\pi}{2}t}dt $

$ a_k=\frac{1}{4}\int_{-1}^{1}x(t)e^{-jk\frac{\pi}{2}t}dt $

$ a_k=\frac{1}{4} \left.\frac{e^{-jk\frac{\pi}{2}t}}{-jk\frac{\pi}{2}}\right|_{-1}^{1} $

$ a_k=\frac{1}{4} (\frac{e^{-jk\frac{\pi}{2}t}}{-jk\frac{\pi}{2}}-\frac{e^{jk\frac{\pi}{2}t}}{jk\frac{\pi}{2}})<\math> <math>a_k=\frac{1}{2jk\pi}(e^{jk\frac{\pi}{2}}-e^{-jk\frac{\pi}{2}})<\math> <math>a_k=\frac{sin(k\frac{\pi}{2})}{k\pi}<\math> $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood