(solution)
(solution)
Line 15: Line 15:
 
<math> y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k]</math>
 
<math> y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k]</math>
  
<math> \sum^{0}_{k=n}2^{k}, n<=0</math>
+
<math> y[n]=\sum^{0}_{k=n}2^{k}, n<=0</math>
  
0, else
+
y[n]=0, else
  
 
let r=-k, k=-r
 
let r=-k, k=-r
  
<math> \sum^{-n}_{r=0}2^{-r}, n<=0 </math>
+
<math> y[n]=\sum^{-n}_{r=0}2^{-r}, n<=0 </math>
  
0, else
+
y[n]=0, else
  
<math> \sum^{-n}_{r=0}(1/2)^{r}, n<=0 </math>
+
<math> y[n]=\sum^{-n}_{r=0}(1/2)^{r}, n<=0 </math>
  
0, else
+
y[n]=0, else
  
 
<math> y[n] =2(1-(1/2)^{-n+1})u[-n] </math>
 
<math> y[n] =2(1-(1/2)^{-n+1})u[-n] </math>
  
<math> (2-2^{n})u[-n]</math>
+
<math> y[n]=(2-2^{n})u[-n]</math>

Revision as of 10:56, 15 October 2008

question

3. An LTI system has unit impulse response $ h[n]=u[-n] $ Compute the system's response to the input $ x[n]=2^{n}u[-n]. $(Simplify your answer until all \sum signs disappear.)

solution

$ y[n]=x[n]*h[n] $

$ y[n]=\sum^{\infty}_{k=-\infty}x[n]*h[n-k] $

$ y[n]=\sum^{\infty}_{k=-\infty}2^{k}u[-k]u[n-k] $

n[-k] = 1 ,-k>=0

k<=0

$ y[n]=\sum^{0}_{k=-\infty}2^{k}u[n-k] $

$ y[n]=\sum^{0}_{k=n}2^{k}, n<=0 $

y[n]=0, else

let r=-k, k=-r

$ y[n]=\sum^{-n}_{r=0}2^{-r}, n<=0 $

y[n]=0, else

$ y[n]=\sum^{-n}_{r=0}(1/2)^{r}, n<=0 $

y[n]=0, else

$ y[n] =2(1-(1/2)^{-n+1})u[-n] $

$ y[n]=(2-2^{n})u[-n] $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn