Line 15: Line 15:
  
 
<math>a_k = \frac{1}{T} \int_{0}^{T} x(t) e^{-jkw_0t} dt</math>
 
<math>a_k = \frac{1}{T} \int_{0}^{T} x(t) e^{-jkw_0t} dt</math>
 +
 +
[[Image:X(t)_ECE301Fall2008mboutin.jpg]]
 +
 +
From diagram, <math>a_0 = \frac{1}{2}</math> because it is the average of the signal over one period.
 +
 +
Then, using the formula:
 +
 +
<math>a_k = \frac{1}{4} \int_{0}^{4} x(t) e^{-jk\frac{\pi}{2}t} dt</math>

Revision as of 10:50, 15 October 2008

Compute the coefficients $ a_k $ of the Fourier series of the signal x(t) periodic with period T = 4 defined by

$ \,x(t)=\left\{\begin{array}{cc} 0, & -2<t<-1 \\ 1, & -1\leq t\leq 1 \\ 0, & 1<t\leq 2 \end{array} \right. \, $


Answer:

$ T = \frac{2\pi}{w_0} = 4 $

$ w_0 = \frac{\pi}{2} $

$ a_k = \frac{1}{T} \int_{0}^{T} x(t) e^{-jkw_0t} dt $

File:X(t) ECE301Fall2008mboutin.jpg

From diagram, $ a_0 = \frac{1}{2} $ because it is the average of the signal over one period.

Then, using the formula:

$ a_k = \frac{1}{4} \int_{0}^{4} x(t) e^{-jk\frac{\pi}{2}t} dt $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett