Line 32: Line 32:
  
 
{ = <math> \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} </math> For all k < n and n > 0
 
{ = <math> \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} </math> For all k < n and n > 0
 +
 +
 
{ = 0 , else
 
{ = 0 , else

Revision as of 10:56, 12 October 2008

Test Correction of # 3

An LTI system has unit impulse response $ h[n] = u[-n] $

Compute the system's response to the input $ x[n] = 2^{n}u[-n] $

(Simplify answer until all summation signs disappear.)

h[n] = u[-n]

x[n] = $ 2^{n} $u[-n]

y[n] = x[n] * h[n]

= $ \sum^{\infty}_{k = -\infty} 2^{k}u[-k]u[-n--k] $

since -k > 0 and k < 0 the summation parameters change

= $ \sum^{0}_{k = -\infty} 2^{k}u[-n+k] $

other step function changes parameters again

n = k

= $ \sum^{0}_{k = n} 2^{k} $


= $ \sum^{-n}_{0} \frac{1}{2}^{k} $ since n <= 0; </math>

This is then a property that can be exchanged to get rid of the summation signs using a general solution.

{ = $ \frac{1-\frac{1}{2}^{-n+1}}{1-\frac{1}{2}} $ For all k < n and n > 0


{ = 0 , else

Alumni Liaison

BSEE 2004, current Ph.D. student researching signal and image processing.

Landis Huffman