Revision as of 10:01, 8 October 2008 by Mpaganin (Talk)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Signal

$ X(\omega) = 6\delta (\omega - 5) + 3\pi \delta(\omega - 1) \! $

Inverse Fourier Transform

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \! $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 6\delta (\omega -5)e^{j\omega t} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} 3\pi \delta (\omega -1)e^{j\omega t} d\omega \! $

We know that:

$ \int_{-\infty}^{\infty} \delta (\omega -t_0) e^{jwt} d\omega = e^{jt_0 t} \! $

Therefore:

$ x(t) = \frac{6}{2\pi }e^{5jt} + \frac{3\pi }{2\pi }e^{jt} \! $


$ x(t) = \frac{3}{\pi }e^{5jt} + \frac{3}{2}e^{jt} \! $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett