(New page: == Signal == <math> X(\omega) = 6\delta (\omega - 5) + 3\pi \delta(\omega - 1) \!</math> == Inverse Fourier Transform == <math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e...)
 
 
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 +
 
== Signal ==
 
== Signal ==
  
Line 19: Line 30:
  
 
<math> x(t) = \frac{3}{\pi }e^{5jt} + \frac{3}{2}e^{jt} \!</math>
 
<math> x(t) = \frac{3}{\pi }e^{5jt} + \frac{3}{2}e^{jt} \!</math>
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:51, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform



Signal

$ X(\omega) = 6\delta (\omega - 5) + 3\pi \delta(\omega - 1) \! $

Inverse Fourier Transform

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega )e^{j\omega t} d\omega \! $

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} 6\delta (\omega -5)e^{j\omega t} d\omega + \frac{1}{2\pi} \int_{-\infty}^{\infty} 3\pi \delta (\omega -1)e^{j\omega t} d\omega \! $

We know that:

$ \int_{-\infty}^{\infty} \delta (\omega -t_0) e^{jwt} d\omega = e^{jt_0 t} \! $

Therefore:

$ x(t) = \frac{6}{2\pi }e^{5jt} + \frac{3\pi }{2\pi }e^{jt} \! $


$ x(t) = \frac{3}{\pi }e^{5jt} + \frac{3}{2}e^{jt} \! $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett