Line 21: Line 21:
  
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{j k \omega_o t}</math>
 
<math>x(t) = \sum^{\infty}_{k = -\infty} a_k e^{j k \omega_o t}</math>
 +
 +
and
 +
 +
<math>\cos(4 t + \frac{\pi}{3}) = \frac{e^{j(4 t + \frac{\pi}{3})}}{2} + \frac{e^{-j(4 t + \frac{\pi}{3})}}{2}</math>

Revision as of 11:19, 8 October 2008

The Signal

$ X(j \omega) = \cos(4 \omega + \frac{\pi}{3}) $

Taken from 4.22.b from the course book, it looks interesting and I want to try it.


The Inverse Fourier Transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(j \omega)e^{j\omega t}d\omega $

For this problem I will not be using the above equation but in stead be using duality.


$ x(t) = \cos(4 t + \frac{\pi}{3}) $


note

$ x(t) = \sum^{\infty}_{k = -\infty} a_k e^{j k \omega_o t} $

and

$ \cos(4 t + \frac{\pi}{3}) = \frac{e^{j(4 t + \frac{\pi}{3})}}{2} + \frac{e^{-j(4 t + \frac{\pi}{3})}}{2} $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva