(9 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
Compute the inverse Fourier transform of the following signal using the integral formula:
 
Compute the inverse Fourier transform of the following signal using the integral formula:
  
 
<math>\,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\,</math>
 
<math>\,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\,</math>
 
  
  
 
== Answer ==
 
== Answer ==
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\left(
 +
\int_{-\infty}^{\infty}e^{-|\omega +3|}e^{j\omega t}\,d\omega
 +
+ \int_{-\infty}^{\infty}e^{j(\omega + 5)}\delta(\omega - \pi)e^{j\omega t}\,d\omega
 +
\right)\,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\left(
 +
\int_{-\infty}^{-3}e^{\omega +3}e^{j\omega t}\,d\omega
 +
+ \int_{-3}^{\infty}e^{-\omega -3}e^{j\omega t}\,d\omega +
 +
e^{j5}\int_{-\infty}^{\infty}e^{j(t+1)\omega}\delta(\omega - \pi)\,d\omega
 +
\right)\,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\left(
 +
e^{3}\int_{-\infty}^{-3}e^{(jt+1)\omega}\,d\omega
 +
+ e^{-3}\int_{-3}^{\infty}e^{(jt-1)\omega}\,d\omega
 +
+ e^{j5}e^{j(t+1)\pi}
 +
\right)\,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\left(
 +
\frac{e^{3}}{jt+1}\left. e^{(jt+1)\omega}\right]_{-\infty}^{-3}
 +
+ \frac{e^{-3}}{jt-1}\left. e^{(jt-1)\omega}\right]_{-3}^{\infty}
 +
+ e^{j(\pi(t+1)+5)}
 +
\right)\,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\left(
 +
\frac{e^{3}}{jt+1}(e^{-3(jt+1)}-0)
 +
+ \frac{e^{-3}}{jt-1}(0-e^{-3(jt-1)})
 +
+ e^{j(\pi(t+1)+5)}
 +
\right)\,</math>
 +
 +
<math>\,x(t)=\frac{1}{2\pi}\left(
 +
\frac{1}{jt+1}e^{-j3t}
 +
- \frac{1}{jt-1}e^{-j3t}
 +
+ e^{j(\pi(t+1)+5)}
 +
\right)\,</math>
 +
 +
<math>\,x(t)=
 +
\frac{e^{-j3t}}{2\pi} \left(\frac{1}{jt+1} - \frac{1}{jt-1} \right)
 +
+ \frac{e^{j(\pi(t+1)+5)}}{2\pi}
 +
\,</math>
 +
 +
<math>\,x(t)=
 +
\frac{e^{-j3t}}{2\pi}\frac{jt-1-(jt+1)}{-t^2-1}
 +
+ \frac{e^{j(\pi(t+1)+5)}}{2\pi}
 +
\,</math>
 +
 +
<math>\,x(t)=
 +
\frac{e^{-j3t}}{2\pi}\frac{2}{t^2+1}
 +
+ \frac{e^{j(\pi(t+1)+5)}}{2\pi}
 +
\,</math>
 +
 +
<math>\,x(t)=
 +
\frac{e^{-j3t}}{\pi(t^2+1)}
 +
+ \frac{e^{j(\pi(t+1)+5)}}{2\pi}
 +
\,</math>
 +
 +
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:42, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Compute the inverse Fourier transform of the following signal using the integral formula:

$ \,\mathcal{X}(\omega)=e^{-|\omega +3|} + e^{j(\omega + 5)}\delta(\omega - \pi)\, $


Answer

$ \,x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}\mathcal{X}(\omega)e^{j\omega t}\,d\omega \, $

$ \,x(t)=\frac{1}{2\pi}\left( \int_{-\infty}^{\infty}e^{-|\omega +3|}e^{j\omega t}\,d\omega + \int_{-\infty}^{\infty}e^{j(\omega + 5)}\delta(\omega - \pi)e^{j\omega t}\,d\omega \right)\, $

$ \,x(t)=\frac{1}{2\pi}\left( \int_{-\infty}^{-3}e^{\omega +3}e^{j\omega t}\,d\omega + \int_{-3}^{\infty}e^{-\omega -3}e^{j\omega t}\,d\omega + e^{j5}\int_{-\infty}^{\infty}e^{j(t+1)\omega}\delta(\omega - \pi)\,d\omega \right)\, $

$ \,x(t)=\frac{1}{2\pi}\left( e^{3}\int_{-\infty}^{-3}e^{(jt+1)\omega}\,d\omega + e^{-3}\int_{-3}^{\infty}e^{(jt-1)\omega}\,d\omega + e^{j5}e^{j(t+1)\pi} \right)\, $

$ \,x(t)=\frac{1}{2\pi}\left( \frac{e^{3}}{jt+1}\left. e^{(jt+1)\omega}\right]_{-\infty}^{-3} + \frac{e^{-3}}{jt-1}\left. e^{(jt-1)\omega}\right]_{-3}^{\infty} + e^{j(\pi(t+1)+5)} \right)\, $

$ \,x(t)=\frac{1}{2\pi}\left( \frac{e^{3}}{jt+1}(e^{-3(jt+1)}-0) + \frac{e^{-3}}{jt-1}(0-e^{-3(jt-1)}) + e^{j(\pi(t+1)+5)} \right)\, $

$ \,x(t)=\frac{1}{2\pi}\left( \frac{1}{jt+1}e^{-j3t} - \frac{1}{jt-1}e^{-j3t} + e^{j(\pi(t+1)+5)} \right)\, $

$ \,x(t)= \frac{e^{-j3t}}{2\pi} \left(\frac{1}{jt+1} - \frac{1}{jt-1} \right) + \frac{e^{j(\pi(t+1)+5)}}{2\pi} \, $

$ \,x(t)= \frac{e^{-j3t}}{2\pi}\frac{jt-1-(jt+1)}{-t^2-1} + \frac{e^{j(\pi(t+1)+5)}}{2\pi} \, $

$ \,x(t)= \frac{e^{-j3t}}{2\pi}\frac{2}{t^2+1} + \frac{e^{j(\pi(t+1)+5)}}{2\pi} \, $

$ \,x(t)= \frac{e^{-j3t}}{\pi(t^2+1)} + \frac{e^{j(\pi(t+1)+5)}}{2\pi} \, $



Back to Practice Problems on CT Fourier transform

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett