(New page: == Inverse Fourier Transform == <math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw </math> <m...)
 
Line 4: Line 4:
 
<math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math>
 
<math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math>
  
<math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw </math>
+
<math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw </math>
  
<math> x[n] = \int_{-\infty}^\infty \sigma(\omega - \pi)e^{j\omega t} dw </math>
+
<math> x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw </math>

Revision as of 19:01, 8 October 2008

Inverse Fourier Transform

$ \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \delta (\omega - \pi)e^{j\omega t} dw $

$ x[n] = \int_{-\infty}^\infty \delta (\omega - \pi)e^{j\omega t} dw $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett