(New page: == Inverse Fourier Transform == <math> \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw </math> <m...)
(No difference)

Revision as of 19:00, 8 October 2008

Inverse Fourier Transform

$ \chi(\omega) = 2\pi \sigma(\omega - \pi) <\math> <math> x[n] = frac{1}{2\pi}\int_{-\infty}^{\infty} \sigma(\omega-\pi)e^{j\omega t} dw $

$ x[n] = \int_{-\infty}^\infty \sigma(\omega - \pi)e^{j\omega t} dw $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva