(New page: == INVERSE FOURIER TRANSFORM == <math> X(\omega) = \delta(\omega) + \delta(\omega - 1) </math> Knowing the formula for the Inverse Fourier transform <math>x(t)=\frac{1}{2\pi}\int_{-\in...)
 
 
(6 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== INVERSE FOURIER TRANSFORM ==
 
== INVERSE FOURIER TRANSFORM ==
  
<math> X(\omega) = \delta(\omega) + \delta(\omega - 1) </math>
+
<math> X(\omega) = \delta(\omega - 1) + \delta(\omega - 3) </math>
  
  
Line 10: Line 20:
 
We can proceed to compute its inverse
 
We can proceed to compute its inverse
  
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} (\delta(\omega)e^{j\omega t} + \delta(\omega - 1)e^{j\omega t} d\omega \ </math>
+
<math> x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega - 1)e^{j\omega t} + \delta(\omega - 3)e^{j\omega t} d\omega \ </math>
 +
 
 +
<math> x(t) = \frac{1}{2\pi}[e^{jt}+ e^{3jt}]</math>
 +
 
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:52, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


INVERSE FOURIER TRANSFORM

$ X(\omega) = \delta(\omega - 1) + \delta(\omega - 3) $


Knowing the formula for the Inverse Fourier transform

$ x(t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}X(\omega)e^{j\omega t}d\omega \, $

We can proceed to compute its inverse

$ x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \delta(\omega - 1)e^{j\omega t} + \delta(\omega - 3)e^{j\omega t} d\omega \ $

$ x(t) = \frac{1}{2\pi}[e^{jt}+ e^{3jt}] $



Back to Practice Problems on CT Fourier transform

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett