(New page: ==Computing the Inverse Fourier Transform== <math>\ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) </math> The inverse Fourier transform is defined as: <math> x(t) = int_{...)
 
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:inverse Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of inverse Fourier transform (CT signals) ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 
==Computing the Inverse Fourier Transform==
 
==Computing the Inverse Fourier Transform==
  
Line 5: Line 14:
 
The inverse Fourier transform is defined as:
 
The inverse Fourier transform is defined as:
  
<math> x(t) = int_{-infinity}^{infinity} \frac{X(w)}{2 \pi} e^{jwt} dw </math>
+
<math> x(t) = \int_{-\infty}^{\infty} \frac{X(w)}{2 \pi} e^{jwt} dw </math>
 +
 
 +
Using this formula to determine the signal:
 +
 
 +
<math>\ x(t) = \frac{8 \pi}{2 \pi} \int_{-\infty}^{\infty} w e^{jwt} \delta(w-9) dw + \frac{2}{2 \pi} \int_{-\infty}^{\infty}w^{3} \delta(w-4 \pi) e^{jwt} dw </math>
 +
 
 +
Now using the sifting property of the delta function we find that the signal is
 +
 
 +
<math>\ x(t) = 36 e^{j9t} + 64 \pi^{2} e^{j4\pi t} </math>
 +
 
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:40, 16 September 2013

Example of Computation of inverse Fourier transform (CT signals)

A practice problem on CT Fourier transform


Computing the Inverse Fourier Transform

$ \ X(\omega)= 8 \pi w \delta(w-9) + 2 \pi w^{3} \delta(w-4 \pi) $

The inverse Fourier transform is defined as:

$ x(t) = \int_{-\infty}^{\infty} \frac{X(w)}{2 \pi} e^{jwt} dw $

Using this formula to determine the signal:

$ \ x(t) = \frac{8 \pi}{2 \pi} \int_{-\infty}^{\infty} w e^{jwt} \delta(w-9) dw + \frac{2}{2 \pi} \int_{-\infty}^{\infty}w^{3} \delta(w-4 \pi) e^{jwt} dw $

Now using the sifting property of the delta function we find that the signal is

$ \ x(t) = 36 e^{j9t} + 64 \pi^{2} e^{j4\pi t} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva