Line 10: Line 10:
 
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math>
 
<math>X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt</math>
  
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega}+int_{-\infty}^{\infty}e^{-jt(1+\omega)})</math>
+
<math>X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}+\int_{-\infty}^{\infty}e^{-jt(1+\omega)})</math>

Revision as of 07:50, 8 October 2008

Let x(t)= $ cos(t) $


Then

$ X(\omega) = \int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}cos(t)e^{-j\omega t}dt $

$ X(\omega) = \int_{-\infty}^{\infty}\frac{1}{2}(e^{jt}+e^{-jt})e^{-j\omega t}dt $

$ X(\omega) = \frac{1}{2}(\int_{-\infty}^{\infty}e^{jt(1-\omega)}+\int_{-\infty}^{\infty}e^{-jt(1+\omega)}) $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang