(The Fourier Transform)
(The Fourier Transform)
Line 32: Line 32:
  
  
A faster way to solve this problem would be to use the Multiplication Property
+
A faster/easier way to solve this problem would be to use the Multiplication Property

Revision as of 16:44, 7 October 2008

The Signal

$ (t e^{-4t} \sin{6 \pi t}) u(t) $


The Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{-\infty}^{\infty} (te^{-4t}\sin{6\pi t})u(t) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t}\sin{6\pi t}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} (te^{-4t})(\frac {e^{j 6 \pi t} - e^{-j 6 \pi t}}{2 j}) e^{-j\omega t}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{-4t} e^{j 6 \pi t} e^{-j\omega t}}{2 j} - \frac {t e^{-4t} e^{-j 6 \pi t} e^{-j\omega t}}{2 j}dt $


$ X(\omega)=\int_{0}^{\infty} \frac {t e^{t(j(6 \pi - \omega)-4)}}{2 j} - \frac {t e^{t(-j(6 \pi + \omega)-4)}}{2 j}dt $


$ X(\omega)= \frac{(t (j(6 \pi - \omega)-4) - 1) e^{t(j(6 \pi - \omega)-4)}}{2 j (j(6 \pi - \omega)-4)} - \frac{(t (-j(6 \pi + \omega)-4) - 1) e^{t(-j(6 \pi + \omega)-4)}}{2 j (-j(6 \pi + \omega)-4)}\bigg]_0^\infty $


$ X(\omega)= \frac{-1}{2 j (j(6 \pi - \omega)-4)} + \frac{1}{2 j (-j(6 \pi + \omega)-4)} $


A faster/easier way to solve this problem would be to use the Multiplication Property

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett