Line 6: Line 6:
  
 
<math> = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \!</math>
 
<math> = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \!</math>
 +
 +
 +
after quite a bit of math I get the answer to be
 +
 +
 +
<math>\frac{1}{2}(\frac{1}{2 + j8 - jw} + \frac{1}{2 -j8 -jw} + \frac{1}{2 - j8 - jw} \frac{1}{2 + j8 + jw})</math>
 +
 +
 +
 +
I'm not sure if I'm right though because when I checked it in matlab the answer I got was
 +
 +
<pre> 4*(68+w^2)/(68+w^2-16*w)/(68+w^2+16*w) <\pre>

Revision as of 13:07, 8 October 2008

$ \ x(t) = e^{-2|t|}cos(8t) $

$ X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $

$ = \int_{-\infty}^{0} e^{2|t|}cos(8t) e^{-j\omega t} dt \! + \int_{0}^{\infty} e^{-2|t|}cos(8t) e^{-j\omega t} dt \! $


after quite a bit of math I get the answer to be


$ \frac{1}{2}(\frac{1}{2 + j8 - jw} + \frac{1}{2 -j8 -jw} + \frac{1}{2 - j8 - jw} \frac{1}{2 + j8 + jw}) $


I'm not sure if I'm right though because when I checked it in matlab the answer I got was

 4*(68+w^2)/(68+w^2-16*w)/(68+w^2+16*w) <\pre>

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood