(3 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
==Fourier Transform==
 
==Fourier Transform==
  
Line 4: Line 13:
  
 
<font "size"=4>
 
<font "size"=4>
<math>x(t)=te^{-6t-6}u(t-6) \,\ </math>
+
<math>x(t)=(t-1)e^{-6t+6}u(t-1) \,\ </math>
 
</font>
 
</font>
  
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
+
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \;</math>
 +
 
 +
 
 +
<math>x(t) \,\  </math>looks like  <math>te^{-6t}u(t) \,\ </math> so we evaluate that
 +
 
 +
the F.T of <math>te^{-6t}u(t) \,\ </math> is
 +
 
 +
<math>\int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \;</math>
 +
 
 +
<math>=\int_{0}^{\infty}te^{-6t-j\omega t}dt \;</math>
 +
 
 +
<math>=\int_{0}^{\infty}te^{-t(6+j\omega t)}dt \;</math>
 +
 
 +
Do integration by parts
 +
 
 +
<math> ={\left. \frac{-te^{-t(6+j\omega )}}{6+j\omega }\right]_{0}^{\infty}} -
 +
\int_{0}^{\infty}\frac{-te^{-t(6+j\omega )}}{6+j\omega }dt \;</math>
 +
 
 +
<math>={\left. \frac{-e^{-t(6+j\omega )}}{(6+j\omega)^2 }\right]_{0}^{\infty}}</math>
 +
 
 +
<math>= \frac{1}{(6+j\omega)^2}</math>
 +
 
 +
And now we use the time shift property and get
 +
 
 +
<math>X(\omega)=\frac{e^{-j\omega}}{(6+j\omega)^2}</math>
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:34, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=(t-1)e^{-6t+6}u(t-1) \,\ $

$ X(\omega)=\int_{-\infty}^{\infty}x(t)=(t-6)e^{-6t+6}u(t-6) e^{-j\omega t}dt \; $


$ x(t) \,\ $looks like $ te^{-6t}u(t) \,\ $ so we evaluate that

the F.T of $ te^{-6t}u(t) \,\ $ is

$ \int_{-\infty}^{\infty}te^{-6t}u(t) e^{-j\omega t}dt \; $

$ =\int_{0}^{\infty}te^{-6t-j\omega t}dt \; $

$ =\int_{0}^{\infty}te^{-t(6+j\omega t)}dt \; $

Do integration by parts

$ ={\left. \frac{-te^{-t(6+j\omega )}}{6+j\omega }\right]_{0}^{\infty}} - \int_{0}^{\infty}\frac{-te^{-t(6+j\omega )}}{6+j\omega }dt \; $

$ ={\left. \frac{-e^{-t(6+j\omega )}}{(6+j\omega)^2 }\right]_{0}^{\infty}} $

$ = \frac{1}{(6+j\omega)^2} $

And now we use the time shift property and get

$ X(\omega)=\frac{e^{-j\omega}}{(6+j\omega)^2} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Sees the importance of signal filtering in medical imaging

Dhruv Lamba, BSEE2010