(29 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
==Fourier Transform==
 
==Fourier Transform==
  
Line 4: Line 13:
  
 
<font "size"=4>
 
<font "size"=4>
<math>x(t)=t^2 u(t)</math>
+
<math>x(t)=t^2 u(t-1)</math>
 
</font>
 
</font>
  
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt</math>
+
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
  
Integration by Parts
 
  
<math>u=t^2 \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t}</math>
+
''Integration by Parts''
 +
 
 +
<math>\int u \; dv = uv - \int v \; du</math>
 +
 
 +
<math>u=t^2 \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t}</math>
 +
 
 +
<math>du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
 +
 
 +
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}\int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
 +
 
 +
''Integration by Parts''
 +
 
 +
<math>u=t \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t}</math>
 +
 
 +
<math>du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
 +
 
 +
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}[\frac{tj}{\omega}e^{-j\omega t}|_{1}^{\infty}+\frac{1}{j \omega}\int_{1}^{\infty}e^{-j\omega t}dt]</math>
 +
 
 +
<math>=[\frac{t^2 j}{\omega}e^{-j\omega t} + \frac{2}{j \omega}(\frac{tj}{\omega}e^{-j\omega t}+\frac{1}{\omega ^2}e^{-j\omega t})]_{1}^{\infty}</math>
 +
 
 +
<math>=(0) - (jt^2 e^{-jt} + 2te^{-jt}+\frac{2}{j}e^{-jt})</math>
 +
 
 +
<font size="4.5">
 +
<math>=je^{-jt}(-t^2 + j2t + 2)</math>
 +
</font>
  
<math>du=2t dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
+
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:24, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=t^2 u(t-1) $

$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt $


Integration by Parts

$ \int u \; dv = uv - \int v \; du $

$ u=t^2 \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t} $

$ du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t} $

$ X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}\int_{1}^{\infty}t^2 e^{-j\omega t}dt $

Integration by Parts

$ u=t \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t} $

$ du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t} $

$ X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}[\frac{tj}{\omega}e^{-j\omega t}|_{1}^{\infty}+\frac{1}{j \omega}\int_{1}^{\infty}e^{-j\omega t}dt] $

$ =[\frac{t^2 j}{\omega}e^{-j\omega t} + \frac{2}{j \omega}(\frac{tj}{\omega}e^{-j\omega t}+\frac{1}{\omega ^2}e^{-j\omega t})]_{1}^{\infty} $

$ =(0) - (jt^2 e^{-jt} + 2te^{-jt}+\frac{2}{j}e^{-jt}) $

$ =je^{-jt}(-t^2 + j2t + 2) $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

EISL lab graduate

Mu Qiao