Line 4: Line 4:
  
 
<font "size"=4>
 
<font "size"=4>
<math>x(t)=t^2 u(t)</math>
+
<math>x(t)=t^2 u(t-1)</math>
 
</font>
 
</font>
  
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t) e^{-j\omega t}dt \; = \int_{0}^{\infty}t^2 e^{-j\omega t}dt</math>
+
<math>X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
  
  
Line 18: Line 18:
 
<math>du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
 
<math>du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
  
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{0}^{\infty} + \frac{2}{j \omega}\int_{0}^{\infty}t^2 e^{-j\omega t}dt</math>
+
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}\int_{1}^{\infty}t^2 e^{-j\omega t}dt</math>
  
 
''Integration by Parts''
 
''Integration by Parts''
Line 26: Line 26:
 
<math>du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
 
<math>du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t}</math>
  
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{0}^{\infty} + \frac{2}{j \omega}[\frac{tj}{\omega}e^{-j\omega t}|_{0}^{\infty}+\frac{1}{j \omega}\int_{0}^{\infty}e^{-j\omega t}dt]</math>
+
<math>X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}[\frac{tj}{\omega}e^{-j\omega t}|_{1}^{\infty}+\frac{1}{j \omega}\int_{1}^{\infty}e^{-j\omega t}dt]</math>
  
<math>=[\frac{t^2 j}{\omega}e^{-j\omega t} + \frac{2}{j \omega}(\frac{tj}{\omega}e^{-j\omega t}+\frac{1}{\omega ^2}e^{-j\omega t})]_{0}^{\infty}</math>
+
<math>=[\frac{t^2 j}{\omega}e^{-j\omega t} + \frac{2}{j \omega}(\frac{tj}{\omega}e^{-j\omega t}+\frac{1}{\omega ^2}e^{-j\omega t})]_{1}^{\infty}</math>
  
 
<math>=(0) - [(\frac{2}{j \omega})(\frac{1}{\omega ^2})]</math>
 
<math>=(0) - [(\frac{2}{j \omega})(\frac{1}{\omega ^2})]</math>
  
 
<math>=\frac{2j}{\omega ^3}</math>
 
<math>=\frac{2j}{\omega ^3}</math>

Revision as of 10:03, 3 October 2008

Fourier Transform

$ X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

$ x(t)=t^2 u(t-1) $

$ X(\omega)=\int_{-\infty}^{\infty}t^2 u(t-1) e^{-j\omega t}dt \; = \int_{1}^{\infty}t^2 e^{-j\omega t}dt $


Integration by Parts

$ \int u \; dv = uv - \int v \; du $

$ u=t^2 \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t} $

$ du=2t \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t} $

$ X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}\int_{1}^{\infty}t^2 e^{-j\omega t}dt $

Integration by Parts

$ u=t \; \; \; \; \; \; \; \; \; \; \; \; \; dv = e^{-j \omega t} $

$ du=1 \; dt \; \; \; \; \; \; \; \; v = \frac{1}{-j\omega}e^{-j \omega t} $

$ X(\omega)=\frac{t^2 j}{\omega}e^{-j\omega t}|_{1}^{\infty} + \frac{2}{j \omega}[\frac{tj}{\omega}e^{-j\omega t}|_{1}^{\infty}+\frac{1}{j \omega}\int_{1}^{\infty}e^{-j\omega t}dt] $

$ =[\frac{t^2 j}{\omega}e^{-j\omega t} + \frac{2}{j \omega}(\frac{tj}{\omega}e^{-j\omega t}+\frac{1}{\omega ^2}e^{-j\omega t})]_{1}^{\infty} $

$ =(0) - [(\frac{2}{j \omega})(\frac{1}{\omega ^2})] $

$ =\frac{2j}{\omega ^3} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang