(New page: == Specify a signal x(t) == <math>x(t)=cos(8 \pi x)e^{-x^{2}}</math>)
 
 
(5 intermediate revisions by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
== Specify a signal x(t) ==
 
== Specify a signal x(t) ==
  
  
<math>x(t)=cos(8 \pi x)e^{-x^{2}}</math>
+
<math>x(t)=cos(8 \pi t)e^{-t^{2}}</math>
 +
 
 +
== Fourier Transform of x(t) ==
 +
:<math>\begin{align} X(\omega)  &=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi -t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}-e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt
 +
\\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}}{2}e^{-j\omega t}dt  -\int_{-\infty}^{\infty}\frac{e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt
 +
 
 +
\end{align}</math>
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:25, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Specify a signal x(t)

$ x(t)=cos(8 \pi t)e^{-t^{2}} $

Fourier Transform of x(t)

$ \begin{align} X(\omega) &=\int_{-\infty}^{\infty} x(t) e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty} cos(8 \pi t)e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t}-e^{-j8\pi t}}{2}e^{-t^{2}}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{j8\pi t-t^2}-e^{-j8\pi t-t^2}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{t(j8\pi -t)}-e^{-t(j8\pi +t)}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}-e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt \\&= \int_{-\infty}^{\infty}\frac{e^{(t-4\pi j)^2+16\pi ^2}}{2}e^{-j\omega t}dt -\int_{-\infty}^{\infty}\frac{e^{-(t-4\pi j)^2-16\pi ^2}}{2}e^{-j\omega t}dt \end{align} $

Back to Practice Problems on CT Fourier transform

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood