(New page: <math>x(t) = u(t)\frac{d}{dt}cos(t-2\pi)</math> <math>X(\omega) = j\omega\int\limits_{-\infty}^{\infty} cos(t-2\pi)u(t)e^{-j\omega t}dt</math> <math>= j\omega\int\limits_{0}^{\inft...)
(No difference)

Revision as of 15:05, 8 October 2008

$ x(t) = u(t)\frac{d}{dt}cos(t-2\pi) $

$ X(\omega) = j\omega\int\limits_{-\infty}^{\infty} cos(t-2\pi)u(t)e^{-j\omega t}dt $

    $ =  j\omega\int\limits_{0}^{\infty} cos(t-2\pi)e^{-j\omega t}dt $
    $ \tau  = t - 2\pi $
    $ =  j\omega\int\limits_{0}^{\infty} cos(\tau)e^{-j\omega(\tau -2\pi)}dt $
    $ =  j\omega\int\limits_{0}^{\infty} cos(\tau)e^{-j\omega \tau}e^{-j\omega 2\pi}dt $
    $ =  j\omega e^{-j\omega 2\pi} \int\limits_{0}^{\infty} cos(\tau)e^{-j\omega \tau}dt $
    $ =  j\omega e^{-j\omega 2\pi} \int\limits_{0}^{\infty}frac{1}{2}(e^{j\tau} e^{-j\omega \tau}dt $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett