Revision as of 17:29, 8 October 2008 by Cdleon (Talk)

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-2 < 0 \rightarrow x_1(t) = e^{3t-6} $

and when,

$ t-2 >0 \rightarrow x_2(t) = e^{-3t-6} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} e^{3t-6}e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} e^{-3t-6}e^{-j\omega t} \,dt $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang