(One intermediate revision by one other user not shown)
Line 1: Line 1:
 +
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
 +
 
==FOURIER TRANSFORM==
 
==FOURIER TRANSFORM==
  
Line 24: Line 33:
 
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt </math>
 
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt </math>
  
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\,</math>
+
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{1}_{-\infty} } \frac{1}{e^{3}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_1 } e^{3}\,</math>
 +
 
 +
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \frac{e^{3-j\omega}}{3-j\omega} + e^{3} \frac{e^{-3-j\omega}}{3+j\omega} </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \frac{e^{6-2j\omega}}{3-j\omega} + e^{6} \frac{e^{-6-j\omega}}{3+j\omega} </math>
+
<math> \mathcal{X}(\omega) = \frac{e^{-j\omega}}{3-j\omega} + \frac{e^{-j\omega}}{3+j\omega} </math>
  
<math> \mathcal{X}(\omega) = \frac{e^{-2j\omega}}{3-j\omega} + \frac{e^{-2j\omega}}{3+j\omega} </math>
+
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:37, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


FOURIER TRANSFORM

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-1 < 0 \rightarrow x_1(t) = e^{3t-3} $

and when,

$ t-1 >0 \rightarrow x_2(t) = e^{-3t+3} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt $

$ \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{1}_{-\infty} } \frac{1}{e^{3}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_1 } e^{3}\, $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \frac{e^{3-j\omega}}{3-j\omega} + e^{3} \frac{e^{-3-j\omega}}{3+j\omega} $

$ \mathcal{X}(\omega) = \frac{e^{-j\omega}}{3-j\omega} + \frac{e^{-j\omega}}{3+j\omega} $


Back to Practice Problems on CT Fourier transform

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn