Line 8: Line 8:
 
When  
 
When  
  
<math> t-2 < 0 \rightarrow x_1(t) = e^{3t-6} </math>
+
<math> t-1 < 0 \rightarrow x_1(t) = e^{3t-3} </math>
  
 
and when,
 
and when,
  
<math> t-2 >0 \rightarrow x_2(t) = e^{-3t+6} </math>
+
<math> t-1 >0 \rightarrow x_2(t) = e^{-3t+3} </math>
  
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
 
So, we can then compute the Fourier series by adding the integrals of each diferent case.
Line 18: Line 18:
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
 
<math>\ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \int_{-\infty}^{2} e^{3t-6}e^{-j\omega t}\,dt + \int_{2}^{\infty} e^{-3t+6}e^{-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{3t-j\omega t}\,dt + e^{6} \int_{2}^{\infty} e^{-3t-j\omega t} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt </math>
  
<math> \mathcal{X}(\omega) = \frac{1}{e^{6}} \int_{-\infty}^{2} e^{t(3-j\omega)}\,dt + e^{6} \int_{2}^{\infty} e^{-t(3+j\omega)} \,dt </math>
+
<math> \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt </math>
  
 
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\,</math>
 
<math> \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\,</math>

Revision as of 17:59, 8 October 2008

FOURIER TRANSFORM

$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-1 < 0 \rightarrow x_1(t) = e^{3t-3} $

and when,

$ t-1 >0 \rightarrow x_2(t) = e^{-3t+3} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega) = \int_{-\infty}^{\infty} x_1(t)e^{-j\omega t}\,dt + \int_{-\infty}^{\infty} x_2(t)e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \int_{-\infty}^{1} e^{3t-3}e^{-j\omega t}\,dt + \int_{1}^{\infty} e^{-3t+3}e^{-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{3t-j\omega t}\,dt + e^{3} \int_{1}^{\infty} e^{-3t-j\omega t} \,dt $

$ \mathcal{X}(\omega) = \frac{1}{e^{3}} \int_{-\infty}^{1} e^{t(3-j\omega)}\,dt + e^{3} \int_{1}^{\infty} e^{-t(3+j\omega)} \,dt $

$ \mathcal{X}(\omega) = {\left. \frac{e^{t(3-j\omega)}}{3-j\omega} \right]^{2}_{-\infty} } \frac{1}{e^{6}} + {\left. -\frac{e^{-t(3+j\omega)}}{3+j\omega} \right]^{\infty}_2 } e^{6}\, $

$ \mathcal{X}(\omega) = \frac{1}{e^{6}} \frac{e^{6-2j\omega}}{3-j\omega} + e^{6} \frac{e^{-6-j\omega}}{3+j\omega} $

$ \mathcal{X}(\omega) = \frac{e^{-2j\omega}}{3-j\omega} + \frac{e^{-2j\omega}}{3+j\omega} $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn