(New page: <math> x(t) = e^{-3|t-2|} </math>)
 
Line 1: Line 1:
 +
  
  
  
 
<math> x(t) = e^{-3|t-2|} </math>
 
<math> x(t) = e^{-3|t-2|} </math>
 +
 +
Noticing that there is an absolute value, we can proceed to divide in tow cases.
 +
 +
When
 +
 +
<math> t-2 < 0 \rightarrow x(t) = e^{3t-6} </math>
 +
 +
and when,
 +
 +
<math> t-2 >0 \rightarrow x(t) = e^{-3t-6} </math>
 +
 +
So, we can then compute the Fourier series by adding the integrals of each diferent case.
 +
 +
<math>\ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\,</math>

Revision as of 17:26, 8 October 2008



$ x(t) = e^{-3|t-2|} $

Noticing that there is an absolute value, we can proceed to divide in tow cases.

When

$ t-2 < 0 \rightarrow x(t) = e^{3t-6} $

and when,

$ t-2 >0 \rightarrow x(t) = e^{-3t-6} $

So, we can then compute the Fourier series by adding the integrals of each diferent case.

$ \ \mathcal{X}(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}\,dt\, $

Alumni Liaison

Abstract algebra continues the conceptual developments of linear algebra, on an even grander scale.

Dr. Paul Garrett