Revision as of 17:48, 8 October 2008 by Apdelanc (Talk)

Computing the Fourier Transform

Compute the Fourier Transform of the signal

$ \ x(t)= \int_{-\infty}^{t} \tau \sin(2 \pi \tau+ \pi/4) d\tau $

By definition the Fourier Transform of a signal is defined as:

$ F[x(t)] = X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

First expressing the signal in as a Fourier series:

However before finding the transform we note that integration in the time domain is just division in the frequency domain. So the game plan is to find the Fourier series of x'(t) then divide by the frequency in the frequency space.

$ \ x'(t)=\sin(2\pi t+ \pi/4) = \frac{e^{2 \pi jt + \pi/4}}{2j} - \frac{e^{-2 \pi jt -j \pi/4}}{2j} $

$ X'(\omega)=\int_{-\infty}^{\infty} \frac{e^{j \pi/4}}{2j} e^{j2 \pi} e^{-j\omega t}dt - \int_{-\infty}^{\infty} \frac{e^{-j \pi/4}}{2j} e^{-j2 \pi} e^{-j\omega t}dt $

Using some foresight we see that a straight up integration of the expression above will yield something infinite or indeterminate, we take advantage of the known Fourier transform of a complex exponential.

$ \int_{-\infty}^{\infty} x(t) dt = \frac{X(\omega)}{\omega} - X(0) \pi \delta(\omega) $

$ X'(\omega)= \frac{e^{j \pi/4}}{2j} F[e^{j2 \pi}] - \frac{e^{-j \pi/4}}{2j} F[e^{-j2 \pi}] $

Noting that $ \ F[e^{j\omega_0}] = 2 \pi \delta(\omega - \omega_0) $

$ \ X'(\omega) = j \pi \delta(\omega + 2\pi) e^{-j \pi /4}- j \pi \delta(\omega + 2\pi) e^{j \pi /4} $

Since $ \ X(\omega) = 0 $

$ X(\omega) =\frac{j \pi}{\omega} \delta(\omega + 2\pi) e^{-j \pi /4}- \frac{j \pi}{w} \delta(\omega + 2\pi) e^{j \pi /4} $

Alumni Liaison

Ph.D. 2007, working on developing cool imaging technologies for digital cameras, camera phones, and video surveillance cameras.

Buyue Zhang