(Computing the Fourier Transform)
 
(2 intermediate revisions by one other user not shown)
Line 1: Line 1:
==Computing the Fourier Transform==
+
[[Category:problem solving]]
 +
[[Category:ECE301]]
 +
[[Category:ECE]]
 +
[[Category:Fourier transform]]
 +
[[Category:signals and systems]]
 +
== Example of Computation of Fourier transform of a CT SIGNAL ==
 +
A [[CT_Fourier_transform_practice_problems_list|practice problem on CT Fourier transform]]
 +
----
  
 
Compute the Fourier Transform of the signal
 
Compute the Fourier Transform of the signal
  
<math>\ x(t)= t \sin(2 \pi t+ \pi/4) </math>
+
<math>\ x(t)= \int_{-\infty}^{t} \tau \sin(2 \pi \tau+ \pi/4) d\tau </math>
  
 
By definition the Fourier Transform of a signal is defined as:
 
By definition the Fourier Transform of a signal is defined as:
  
<math>X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
+
<math> F[x(t)] = X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt</math>
  
 
First expressing the signal in as a Fourier series:
 
First expressing the signal in as a Fourier series:
  
However before finding the transform we note that multiplication in the time domain is just differentiation in the frequency domain. So the game plan is to find the Fourier series of x(t)/t then differentiate it with respect to w in the frequency space.
+
However before finding the transform we note that integration in the time domain is just division in the frequency domain. So the game plan is to find the Fourier series of x'(t) then divide by the frequency in the frequency space.
  
<math>\ x1(t)=\sin(2\pi t+ \pi/4) = \frac{e^{2 \pi jt + \pi/4}{2j}</math>
+
<math>\ x'(t)=\sin(2\pi t+ \pi/4) = \frac{e^{2 \pi jt + \pi/4}}{2j} - \frac{e^{-2 \pi jt -j \pi/4}}{2j}</math>
 +
 
 +
<math> X'(\omega)=\int_{-\infty}^{\infty} \frac{e^{j \pi/4}}{2j} e^{j2 \pi} e^{-j\omega t}dt - \int_{-\infty}^{\infty} \frac{e^{-j \pi/4}}{2j} e^{-j2 \pi} e^{-j\omega t}dt</math>
 +
 
 +
Using some foresight we see that a straight up integration of the expression above will yield something infinite or indeterminate, we take advantage of the known Fourier transform of a complex exponential.
 +
 
 +
<math> \int_{-\infty}^{\infty} x(t) dt = \frac{X(\omega)}{\omega} - X(0) \pi \delta(\omega)</math>
 +
 
 +
<math> X'(\omega)= \frac{e^{j \pi/4}}{2j} F[e^{j2 \pi}] - \frac{e^{-j \pi/4}}{2j} F[e^{-j2 \pi}] </math>
 +
 
 +
Noting that <math>\ F[e^{j\omega_0}] = 2 \pi \delta(\omega - \omega_0) </math>
 +
 
 +
<math>\ X'(\omega) = j \pi \delta(\omega + 2\pi) e^{-j \pi /4}- j \pi \delta(\omega + 2\pi) e^{j \pi /4}</math>
 +
 
 +
Since <math>\ X(\omega) = 0 </math>
 +
 
 +
<math> X(\omega) =\frac{j \pi}{\omega} \delta(\omega + 2\pi) e^{-j \pi /4}- \frac{j \pi}{w} \delta(\omega + 2\pi) e^{j \pi /4}
 +
----
 +
[[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]]

Latest revision as of 12:23, 16 September 2013

Example of Computation of Fourier transform of a CT SIGNAL

A practice problem on CT Fourier transform


Compute the Fourier Transform of the signal

$ \ x(t)= \int_{-\infty}^{t} \tau \sin(2 \pi \tau+ \pi/4) d\tau $

By definition the Fourier Transform of a signal is defined as:

$ F[x(t)] = X(\omega)=\int_{-\infty}^{\infty}x(t)e^{-j\omega t}dt $

First expressing the signal in as a Fourier series:

However before finding the transform we note that integration in the time domain is just division in the frequency domain. So the game plan is to find the Fourier series of x'(t) then divide by the frequency in the frequency space.

$ \ x'(t)=\sin(2\pi t+ \pi/4) = \frac{e^{2 \pi jt + \pi/4}}{2j} - \frac{e^{-2 \pi jt -j \pi/4}}{2j} $

$ X'(\omega)=\int_{-\infty}^{\infty} \frac{e^{j \pi/4}}{2j} e^{j2 \pi} e^{-j\omega t}dt - \int_{-\infty}^{\infty} \frac{e^{-j \pi/4}}{2j} e^{-j2 \pi} e^{-j\omega t}dt $

Using some foresight we see that a straight up integration of the expression above will yield something infinite or indeterminate, we take advantage of the known Fourier transform of a complex exponential.

$ \int_{-\infty}^{\infty} x(t) dt = \frac{X(\omega)}{\omega} - X(0) \pi \delta(\omega) $

$ X'(\omega)= \frac{e^{j \pi/4}}{2j} F[e^{j2 \pi}] - \frac{e^{-j \pi/4}}{2j} F[e^{-j2 \pi}] $

Noting that $ \ F[e^{j\omega_0}] = 2 \pi \delta(\omega - \omega_0) $

$ \ X'(\omega) = j \pi \delta(\omega + 2\pi) e^{-j \pi /4}- j \pi \delta(\omega + 2\pi) e^{j \pi /4} $

Since $ \ X(\omega) = 0 $

$ X(\omega) =\frac{j \pi}{\omega} \delta(\omega + 2\pi) e^{-j \pi /4}- \frac{j \pi}{w} \delta(\omega + 2\pi) e^{j \pi /4} ---- [[CT_Fourier_transform_practice_problems_list|Back to Practice Problems on CT Fourier transform]] $

Alumni Liaison

Have a piece of advice for Purdue students? Share it through Rhea!

Alumni Liaison