Line 56: Line 56:
  
 
<math> F(j\omega) = \frac{4e^{-j \omega}}{4 + \omega^2}
 
<math> F(j\omega) = \frac{4e^{-j \omega}}{4 + \omega^2}
 +
 +
==4.2==
 +
===a===
 +
===b===
 +
==4.3==
 +
===a===
 +
===b===
 +
==4.4==
 +
===a===
 +
===b===
 +
==4.5==
 +
==4.21==
 +
==4.22==

Revision as of 07:14, 8 October 2008

Allen Humphreys_ECE301Fall2008mboutin
Homework 5_ECE301Fall2008mboutin | .1 | .2 | .3 | .4

4.1

a

b

$ f(t) = e^{-2 |(t-1)|} $
$ f(t) = \begin{cases} e^{-2 (t-1)}, t>1\\ e^{-2 (1-t)}, t<1 \end{cases} = \begin{cases} e^{-2 (t-1)}\times u(t-1) = h(t)\\ e^{-2 (1-t)}\times u(1-t) = k(t) \end{cases} $

By the properties of integrating an absolute value and the linearity of the Fourier transform.

$ F(j\times \omega) = H(j\times \omega) + K(j\times \omega) $

$ H(j\times \omega) = \frac{e^{-j \omega}}{(2 + j \omega)} $ from part a.

$ k(t) = e^{-2 (1-t)}\times u(1-t) $

remove the time shift and time reversal

$ m(t) = e^{-2(t)}\times u(t) $

from the table 4.2:

$ M(j \omega) = \frac{1}{2 + j \omega} $

apply the time shift property from table 4.1:

$ M(j \omega) = \frac{e^{-j\omega}}{2 + j \omega} $

apply the time reversal property from table 4.1 making sure to only apply it to the FT of the base function and not to the portion added by the time shift:

$ K(j \omega) = \frac{e^{-j\omega}}{2 - j \omega} $

$ H(j \omega) + K(j \omega) = \frac{e^{-j \omega}}{2 + j \omega} + \frac{e^{-j\omega}}{2 - j \omega} $

finding common denominators:

$ \frac{(2-j\omega)e^{-j \omega}}{2^2 + \omega^2} + \frac{(2+j\omega)e^{-j\omega}}{2^2 + \omega^2} $

in the numerator the $ j\omega $ terms will cancel when added yielding the final answer:

$ F(j\omega) = \frac{4e^{-j \omega}}{4 + \omega^2} ==4.2== ===a=== ===b=== ==4.3== ===a=== ===b=== ==4.4== ===a=== ===b=== ==4.5== ==4.21== ==4.22== $

Alumni Liaison

To all math majors: "Mathematics is a wonderfully rich subject."

Dr. Paul Garrett