Line 4: Line 4:
 
1. N = 4
 
1. N = 4
  
2. <math>\sum_{n=0}^{5}x[n] = 4</math>
+
2. <math>\sum_{n=0}^{3}x[n] = 4</math>
  
3. <math>\sum_{n=1}^{6}(-1)^nx[n] = 2</math>
+
3. <math>\sum_{n=1}^{4}(-1)^nx[n] = 2</math>
  
 
4. For even <math>k\,</math>'s, <math>a_k = a_{k+1}\,</math>
 
4. For even <math>k\,</math>'s, <math>a_k = a_{k+1}\,</math>
Line 13: Line 13:
 
== Answer ==
 
== Answer ==
  
From 1. we know that <math>x[n] = \sum_{n=0}^{5}a_k e^{jk\frac{\pi}{2}n}\,</math>
+
From 1. we know that <math>x[n] = \sum_{n=0}^{3}a_k e^{jk\frac{\pi}{2}n}\,</math>
  
 
Using 2., it is apparent that this is the formula for <math>a_k\,</math>. Specifically, for <math>a_0\,</math>, since the only thing under the sum is <math>x[n]\,</math>. So,
 
Using 2., it is apparent that this is the formula for <math>a_k\,</math>. Specifically, for <math>a_0\,</math>, since the only thing under the sum is <math>x[n]\,</math>. So,
  
<center><math>\frac{1}{4}\sum_{n=0}^{5}x[n] = \frac{1}{4}*4\,</math>, and</center>
+
<center><math>\frac{1}{4}\sum_{n=0}^{3}x[n] = \frac{1}{4}*4\,</math>, and</center>
  
  
 
<center><math>= 1 = a_0\,</math></center>
 
<center><math>= 1 = a_0\,</math></center>
  
Now that we know <math>a_0\,</math>, we know that <math>x[n] = 1 + \sum_{n=1}^{5}a_k e^{jk\frac{\pi}{2}n}\,</math>
+
Now that we know <math>a_0\,</math>, we know that <math>x[n] = 1 + \sum_{n=1}^{4}a_k e^{jk\frac{\pi}{2}n}\,</math>
  
  
 
Since <math>\omega_0 = \frac{\pi}{2}\,</math>, let's try and find <math>a_2\,</math>,
 
Since <math>\omega_0 = \frac{\pi}{2}\,</math>, let's try and find <math>a_2\,</math>,
  
<math>a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n] e^{-2j\frac{\pi}{2}n} = \frac{1}{4}\sum_{n=0}^{5}x[n] e^{-j\pi n}\,</math>
+
<math>a_2 = \frac{1}{4}\sum_{n=0}^{3}x[n] e^{-2j\frac{\pi}{2}n} = \frac{1}{4}\sum_{n=0}^{3}x[n] e^{-j\pi n}\,</math>
  
  
 
Using the property that <math>e^{-j\pi n} = (e^{-j\pi})^{n} = (-1)^{n} \,</math>, we can change the above equation to
 
Using the property that <math>e^{-j\pi n} = (e^{-j\pi})^{n} = (-1)^{n} \,</math>, we can change the above equation to
  
<math>a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n](-1)^{n}\,</math>
+
<math>a_2 = \frac{1}{4}\sum_{n=0}^{3}x[n](-1)^{n}\,</math>
  
  
 
Since the function is periodic and the <math>a_k\,</math>'s repeat every 4 integers, we are able to shift the bounds of summation by one.
 
Since the function is periodic and the <math>a_k\,</math>'s repeat every 4 integers, we are able to shift the bounds of summation by one.
  
According to 3. <math>\sum_{n=1}^{6}(-1)^nx[n] = 2</math>, and
+
According to 3. <math>\sum_{n=1}^{4}(-1)^nx[n] = 2</math>, and
  
 
<math>a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n](-1)^{n}\,</math>
 
<math>a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n](-1)^{n}\,</math>

Revision as of 13:52, 25 September 2008

Guess the Periodic Signal

A certain periodic signal has the following properties:

1. N = 4

2. $ \sum_{n=0}^{3}x[n] = 4 $

3. $ \sum_{n=1}^{4}(-1)^nx[n] = 2 $

4. For even $ k\, $'s, $ a_k = a_{k+1}\, $


Answer

From 1. we know that $ x[n] = \sum_{n=0}^{3}a_k e^{jk\frac{\pi}{2}n}\, $

Using 2., it is apparent that this is the formula for $ a_k\, $. Specifically, for $ a_0\, $, since the only thing under the sum is $ x[n]\, $. So,

$ \frac{1}{4}\sum_{n=0}^{3}x[n] = \frac{1}{4}*4\, $, and


$ = 1 = a_0\, $

Now that we know $ a_0\, $, we know that $ x[n] = 1 + \sum_{n=1}^{4}a_k e^{jk\frac{\pi}{2}n}\, $


Since $ \omega_0 = \frac{\pi}{2}\, $, let's try and find $ a_2\, $,

$ a_2 = \frac{1}{4}\sum_{n=0}^{3}x[n] e^{-2j\frac{\pi}{2}n} = \frac{1}{4}\sum_{n=0}^{3}x[n] e^{-j\pi n}\, $


Using the property that $ e^{-j\pi n} = (e^{-j\pi})^{n} = (-1)^{n} \, $, we can change the above equation to

$ a_2 = \frac{1}{4}\sum_{n=0}^{3}x[n](-1)^{n}\, $


Since the function is periodic and the $ a_k\, $'s repeat every 4 integers, we are able to shift the bounds of summation by one.

According to 3. $ \sum_{n=1}^{4}(-1)^nx[n] = 2 $, and

$ a_2 = \frac{1}{4}\sum_{n=0}^{5}x[n](-1)^{n}\, $ $ a_2 = \frac{1}{4} * 2\, $, and

$ a_2 = \frac{1}{2}\, $

Alumni Liaison

Basic linear algebra uncovers and clarifies very important geometry and algebra.

Dr. Paul Garrett