Line 21: Line 21:
 
from 3 we have <math>a_2 = a_4= a_0 = \frac {5}{6}</math>
 
from 3 we have <math>a_2 = a_4= a_0 = \frac {5}{6}</math>
  
from 4, power of x[n] = <math>\frac {1}{6} \sum_{n=0}^{5} |x[n]|^2</math>
+
from 4, power of x[n] = <math>\frac {1}{6} \sum_{n=0}^{5} |x[n]|^2 = \sum_{n=0}^{5} |{a_k}|^2</math>
 
+
= <math>\sum_{n=0}^{5} |{a_k}|^2</math>
+
  
 
to get a minimum value, <math> a_1=a_3=a_5=0 </math>
 
to get a minimum value, <math> a_1=a_3=a_5=0 </math>
  
Thus <math>x[n]=\frac {5}{6} (1+e^{-jk \frac {2\pi}{3}+e^{-jk \frac {4\pi}{3})</math>
+
Thus <math>x[n]=\frac{5}{6} (1+e^{-jk \frac {2\pi}{3}}+e^{-jk \frac {4\pi}{3}})</math>

Revision as of 13:05, 25 September 2008

Suppose a DT signal x[n] satisfies

1. x[n] is periodic and period N=6.

2. $ \sum_{n=0}^{5}x[n]=5 $

3.$ a_{k+2} = a_k $

4. x[n] has minimum power among all signals that satisfy 1,2,3.

Find x[n].



Answer:

from 1 we have that x[n]= $ \sum_{n=0}^{5}a_k e^{-jk \frac {\pi}{3} n} $

from 2 we have $ a_0 = avg = \frac {5}{6} $

from 3 we have $ a_2 = a_4= a_0 = \frac {5}{6} $

from 4, power of x[n] = $ \frac {1}{6} \sum_{n=0}^{5} |x[n]|^2 = \sum_{n=0}^{5} |{a_k}|^2 $

to get a minimum value, $ a_1=a_3=a_5=0 $

Thus $ x[n]=\frac{5}{6} (1+e^{-jk \frac {2\pi}{3}}+e^{-jk \frac {4\pi}{3}}) $

Alumni Liaison

Prof. Math. Ohio State and Associate Dean
Outstanding Alumnus Purdue Math 2008

Jeff McNeal