Line 25: Line 25:
 
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n]\,</math>
 
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n]\,</math>
  
<math>a_0=\frac{1}{2}\sum_{n=0}^{1}x[n]e^{-jn\pi} = \frac{5}{2}</math>
+
<math>a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]e^{-jn\pi}\,</math>
 +
 
 +
<math>a_0=\frac{5}{4}</math>

Revision as of 11:05, 26 September 2008

Informations

1. $ N = 2\, $

2. $ a_k = 0\, $ for all |k|>1

3. $ \sum_{n=0}^{3}x[n]=2 $

4. $ \sum_{n=0}^{3}(-1)^nx[n]=5 $

Inspections

From the first information, we can directly subtitute N into:

$ x[n]=\sum_{n=0}^{3}a_ke^{jk(2\pi/2)n}\, $

$ x[n]=\sum_{n=0}^{3}a_ke^{jk\pi n}\, $

From the third information, we can find $ a_0\, $:

$ a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]=\frac{1}{4} 2 = \frac{1}{2} $

From the fourth information, we can find $ a_1\, $:

$ a_0=\frac{1}{4}\sum_{n=0}^{3}(-1)^nx[n]\, $

$ a_0=\frac{1}{4}\sum_{n=0}^{3}x[n]e^{-jn\pi}\, $

$ a_0=\frac{5}{4} $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood