(New page: ==DT LTI System== Lets define our system where <math>y[n] = 5x[n] + x[n-5]</math> What we need to do is first find h[n] and H[z] for our system. Then we can calculate the system's respo...)
 
Line 18: Line 18:
  
 
  By the shifting property
 
  By the shifting property
 +
 +
Step 3:
 +
 +
My signal from part 2 has fourier coefficients:
 +
 +
<math> a_0 = 1/2, a_1 = \frac{-1-j}{4}, a_2 = 0, a_3 = \frac{j-1}{4}</math>
 +
 +
<math>y[n] = f(x[n]) = \sum_{k=0}^{3} a_k H(z_k) {z_k}^n</math>

Revision as of 15:56, 26 September 2008

DT LTI System

Lets define our system where $ y[n] = 5x[n] + x[n-5] $

What we need to do is first find h[n] and H[z] for our system.

Then we can calculate the system's response to a signal using H[z] and the fourier coefficients for the system.


Step 1:

$ h[n] = y[\delta[n]] = 5\delta[n]+\delta[n-5] $

Step 2:

$ H(z) = \sum_{k=-\infty}^{\infty} h[k] z^{-k} =\sum_{k=-\infty}^{\infty} (5\delta[n]+\delta[n-5]) z^{-k} = 5z^0+z^-5 = 5+z^{-5} $

By the shifting property

Step 3:

My signal from part 2 has fourier coefficients:

$ a_0 = 1/2, a_1 = \frac{-1-j}{4}, a_2 = 0, a_3 = \frac{j-1}{4} $

$ y[n] = f(x[n]) = \sum_{k=0}^{3} a_k H(z_k) {z_k}^n $

Alumni Liaison

Correspondence Chess Grandmaster and Purdue Alumni

Prof. Dan Fleetwood