Line 10: Line 10:
  
 
Using the shifting property,
 
Using the shifting property,
:<math>H(z)=10 e^{0 z} + e^{-1 z} \, </math>
+
:<math>H(z)=4 e^{0 * 3 z} + e^{-3 z} \, </math>
:<math>H(z)=10 + e^{- z} \, </math>, where z =jw
+
:<math>H(z)=4 + e^{- 3 z} \, </math>, where z =jw
  
 
==Part B==
 
==Part B==
 
:<math>x[n]= -5(e^{j \dfrac{\pi}{2} n}) \,</math>
 
:<math>x[n]= -5(e^{j \dfrac{\pi}{2} n}) \,</math>
 +
:<math>Response = H(s) x(n) \,</math>
 +
:<math>x(t)=-5(e^{j \dfrac{\pi}{2} n})(4+e^{-3j/2}) \, </math>
 +
:<math>x(t)-20e^{j \dfrac{\pi}{2} n}-5e^{j \dfrac{\pi}{2} n}e^{-3j\pi /2} \, </math>
 +
:<math>x(t)-20e^{j \dfrac{\pi}{2} n}-5e^{j \dfrac{\pi}{2} n-3j\pi /2} \, </math>
 +
:<math>x(t)-20e^{j \dfrac{\pi}{2} n}-5e^{j \dfrac{\pi}{2} (n-3) } \, </math>

Latest revision as of 07:27, 25 September 2008

DT LTI system

The system is:

$ y(n)=4x(n)+x(n-3) $

unit impulse response

Obtain the unit impulse response h(t) and the system function H(s) of your system. :

$ d (n) => System =>4 d (n) + d(n-3)\, $
$ h(t)=4d(n) +d(n-3)\, $
$ H(z)=\sum_{-\infty}^{\infty} h(n)e^{-s n} $
$ H(z)=\sum_{-\infty}^{\infty} (4d(n) +d(n-3))e^{-z n} $

Using the shifting property,

$ H(z)=4 e^{0 * 3 z} + e^{-3 z} \, $
$ H(z)=4 + e^{- 3 z} \, $, where z =jw

Part B

$ x[n]= -5(e^{j \dfrac{\pi}{2} n}) \, $
$ Response = H(s) x(n) \, $
$ x(t)=-5(e^{j \dfrac{\pi}{2} n})(4+e^{-3j/2}) \, $
$ x(t)-20e^{j \dfrac{\pi}{2} n}-5e^{j \dfrac{\pi}{2} n}e^{-3j\pi /2} \, $
$ x(t)-20e^{j \dfrac{\pi}{2} n}-5e^{j \dfrac{\pi}{2} n-3j\pi /2} \, $
$ x(t)-20e^{j \dfrac{\pi}{2} n}-5e^{j \dfrac{\pi}{2} (n-3) } \, $

Alumni Liaison

Ph.D. on Applied Mathematics in Aug 2007. Involved on applications of image super-resolution to electron microscopy

Francisco Blanco-Silva