(New page: ==4. Define a DT LTI system.== a) Obtain the unit impulse response h[n] and the system function H(z) of your system. b) Compute the response of your system to the signal you defined in ...)
 
 
(5 intermediate revisions by the same user not shown)
Line 3: Line 3:
 
a) Obtain the unit impulse response h[n] and the system function H(z) of your system.
 
a) Obtain the unit impulse response h[n] and the system function H(z) of your system.
  
b) Compute the response of your system to the signal you defined in Question 1 using H(z) and the Fourier series coefficients of your signal.
+
 
 +
Defining a DT LTI:
 +
<math>y[n] = x[n+1]\,</math>
 +
 
 +
Unit impulse response:
 +
 
 +
<math>h[n] = \delta[n+1]\,</math>
 +
 
 +
Then we find the frequency response:
 +
 
 +
<math>F(z) = \sum^{\infty}_{m=-\infty} h[m+1]e^{jm\omega}\,</math>
 +
 
 +
<math>F(z) = e^{j\omega} \,</math>
 +
 
 +
 
 +
Part b)
 +
 
 +
<math>X[n] = 6\cos(3 \pi n + \pi)\,</math>
 +
 
 +
<math>x[n] = \sum^{2}_{k = -1} a_k e^{jk\frac{\pi}{2} n}\,</math>
 +
 
 +
<math>X[0] = -6 \,</math>
 +
 
 +
<math>X[1] = 6 \,</math>
 +
 
 +
<math>X[2] = -6 \,</math>
 +
 
 +
<math>X[-1] = 6 \,</math>
 +
 
 +
The pattern of k can be seen since it forms a wave.
 +
 
 +
 
 +
<math>y[n] = \sum^{2}_{k = -1} a_k F(z) e^{jk\frac{\pi}{2} n}\,</math>
 +
 
 +
<math>y[n] = \sum^{2}_{k = -1} a_k (e^{-5j\omega} + e^{3j\omega}) e^{jk\frac{\pi}{2} n}\,</math>
 +
 
 +
<math>y[n] = 6 (e^{-5j\omega} + e^{3j\omega}) e^{j(-1)\frac{\pi}{2} n} + (-6) (e^{-5j\omega} + e^{3j\omega}) e^{0}\,</math>

Latest revision as of 18:38, 26 September 2008

4. Define a DT LTI system.

a) Obtain the unit impulse response h[n] and the system function H(z) of your system.


Defining a DT LTI: $ y[n] = x[n+1]\, $

Unit impulse response:

$ h[n] = \delta[n+1]\, $

Then we find the frequency response:

$ F(z) = \sum^{\infty}_{m=-\infty} h[m+1]e^{jm\omega}\, $

$ F(z) = e^{j\omega} \, $


Part b)

$ X[n] = 6\cos(3 \pi n + \pi)\, $

$ x[n] = \sum^{2}_{k = -1} a_k e^{jk\frac{\pi}{2} n}\, $

$ X[0] = -6 \, $

$ X[1] = 6 \, $

$ X[2] = -6 \, $

$ X[-1] = 6 \, $

The pattern of k can be seen since it forms a wave.


$ y[n] = \sum^{2}_{k = -1} a_k F(z) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = \sum^{2}_{k = -1} a_k (e^{-5j\omega} + e^{3j\omega}) e^{jk\frac{\pi}{2} n}\, $

$ y[n] = 6 (e^{-5j\omega} + e^{3j\omega}) e^{j(-1)\frac{\pi}{2} n} + (-6) (e^{-5j\omega} + e^{3j\omega}) e^{0}\, $

Alumni Liaison

Questions/answers with a recent ECE grad

Ryne Rayburn