(b) Response of Signal in Question 1)
(a) h[n] and H[z])
Line 6: Line 6:
 
----
 
----
  
In order to find h[n], we input <math> x[n] = \delta [n] </math> to y[n].  h[n] is then the unit impulse response.
+
In order to find h[n], we input <math> x[n] = \delta [n] </math> to y[n].  h[n] is then the unit impulse response.<br><br>
  
 
<math> \,\ x[n] = \delta [n] </math><br>
 
<math> \,\ x[n] = \delta [n] </math><br>
<math> \,\ y[n] = 5 * \delta [n-5] + 6 * \delta [n-6] </math><br>
+
<math> \,\ h[n] = 5 * \delta [n-5] + 6 * \delta [n+6] </math><br><br>
  
H[z] is the system's function, and is defined by:
+
H[z] is the system's function, and is defined by:<br><br>
 
<math> \sum_{m = -\infty}^{\infty} h[m] * Z</math><sup>-m</sup>
 
<math> \sum_{m = -\infty}^{\infty} h[m] * Z</math><sup>-m</sup>
 +
<br>
 +
<math> \,\ H[z] = \sum_{m = -\infty}^{\infty} ( 5 * \delta [n-5] + 6 * \delta [n+6] ) * Z</math><sup>-m</sup>
 +
<br><br>
 +
This function will only be valid when n = 5 or n = -6 due to the <math> \delta </math>s.
 +
Therefore, the end result is:<br>
 +
<math> \,\ 5 * Z</math><sup>5</sup><math> \,\ + 6 * Z</math><sup>-6</sup>
  
 
=== b)  Response of Signal in Question 1 ===
 
=== b)  Response of Signal in Question 1 ===

Revision as of 19:13, 25 September 2008

Define a DT LTI System

$ \,\ y[n] = 5 * x[n-5] + 6 * x[n-6] $

a) h[n] and H[z]


In order to find h[n], we input $ x[n] = \delta [n] $ to y[n]. h[n] is then the unit impulse response.

$ \,\ x[n] = \delta [n] $
$ \,\ h[n] = 5 * \delta [n-5] + 6 * \delta [n+6] $

H[z] is the system's function, and is defined by:

$ \sum_{m = -\infty}^{\infty} h[m] * Z $-m
$ \,\ H[z] = \sum_{m = -\infty}^{\infty} ( 5 * \delta [n-5] + 6 * \delta [n+6] ) * Z $-m

This function will only be valid when n = 5 or n = -6 due to the $ \delta $s. Therefore, the end result is:
$ \,\ 5 * Z $5$ \,\ + 6 * Z $-6

b) Response of Signal in Question 1


From Question 1: Unfortunately, I did not make a DT signal for Parts 1/2. Instead of going back and redoing my work, I am going to "steal" the work of a Mr. Collin Phillips (my apologies and gratitude to Mr. Collin Phillips).

According to his work:

  • $ \,\ X[n] = 3cos(3\pi n + \pi) $
  • $ \,\ a_0 = 0 $
  • $ \,\ a_1 = -3 $
  • $ \,\ a_k = 0 $ elsewhere
  • $ \,\ N = 2 $


Response of the System $ \,\ y[n] = \sum_{k = <N>}^{\infty} a_k H[e $$ j2\pi k/N $$ \,\ ]e $$ jk(2\pi /N) n $

Because $ a_k $ only has one value, this shouldn't be that hard to calculate.

$ \,\ a_k $ is only valid at $ a_1 = -3 $. Therefore...

$ \,\ y[n] = -3 * $

Alumni Liaison

ECE462 Survivor

Seraj Dosenbach